Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779718480> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2779718480 abstract "Traditionally the surface quality inspection especially for metal polishing purpose is perform by human inspectors. Defect detection is a method of nondestructive testing of material and products to detect defects. This study consists of two parts where the first part is applying vision system to detect and measure surface defects that have been characterized to some level of surface roughness. Specimen of G3141 cold rolled steel is used in this research as it represent the actual material applied in local automotive manufacturer. Gray image of scratch defect on metal surface is detected and information about mean gray pixel value (Ga) is interpreted and converted to surface roughness (Ra) measurement. In this study a new technique is developed where the Ga only read on the specific scratch line without considering the whole image. To realize this, automatic cropping algorithm is developed to detect the region of interest and interpret the Ga value. This techniques will enables the polishing to be done at specific scratch defect area without necessary to develop polishing path throughout the whole surface which is time consuming. Second part is to obtain the optimum polishing parameter by using artificial intelligence technique which is able to predict the grit size, polishing time and polishing force parameter to remove the scratch by polishing process. For the purpose of this study, multiple ANFIS or MANFIS have been selected to predict optimum parameter for polishing parameters. Polishing parameter data can be generated by using MANFIS to predict optimum polishing parameters such as grit size, polishing time and polishing force in order to perform polishing process. However due to lack of study done in the field of flat and dry polishing, the polishing parameter data have to be developed. The polishing parameter data for flat and dry polishing is performed by using robotic polishing arm and the experiment runs design by using full factorial design. Results show that the defect detection algorithm able to detect defect only on the scratch area and able to read the Ga value at detected scratch line and transform it to surface roughness measurement at considerably good level of accuracy compared with manual method. Results from MANFIS have shown that the system is able to predict up to 95% accuracy which is considerably high. The overall results from both parts of this research would inspire further advancements to achieve robust machine vision based surface measurement systems for industrial robotic processes specifically in polishing process." @default.
- W2779718480 created "2018-01-05" @default.
- W2779718480 creator A5042750044 @default.
- W2779718480 date "2016-01-01" @default.
- W2779718480 modified "2023-09-27" @default.
- W2779718480 title "Surface Defect Detection And Polishing Parameter Optimization Using Image Processing For G3141 Cold Rolled Steel" @default.
- W2779718480 hasPublicationYear "2016" @default.
- W2779718480 type Work @default.
- W2779718480 sameAs 2779718480 @default.
- W2779718480 citedByCount "0" @default.
- W2779718480 crossrefType "dissertation" @default.
- W2779718480 hasAuthorship W2779718480A5042750044 @default.
- W2779718480 hasConcept C107365816 @default.
- W2779718480 hasConcept C127413603 @default.
- W2779718480 hasConcept C138113353 @default.
- W2779718480 hasConcept C159985019 @default.
- W2779718480 hasConcept C191897082 @default.
- W2779718480 hasConcept C192562407 @default.
- W2779718480 hasConcept C199639397 @default.
- W2779718480 hasConcept C2781235140 @default.
- W2779718480 hasConcept C41008148 @default.
- W2779718480 hasConcept C71039073 @default.
- W2779718480 hasConcept C78519656 @default.
- W2779718480 hasConceptScore W2779718480C107365816 @default.
- W2779718480 hasConceptScore W2779718480C127413603 @default.
- W2779718480 hasConceptScore W2779718480C138113353 @default.
- W2779718480 hasConceptScore W2779718480C159985019 @default.
- W2779718480 hasConceptScore W2779718480C191897082 @default.
- W2779718480 hasConceptScore W2779718480C192562407 @default.
- W2779718480 hasConceptScore W2779718480C199639397 @default.
- W2779718480 hasConceptScore W2779718480C2781235140 @default.
- W2779718480 hasConceptScore W2779718480C41008148 @default.
- W2779718480 hasConceptScore W2779718480C71039073 @default.
- W2779718480 hasConceptScore W2779718480C78519656 @default.
- W2779718480 hasLocation W27797184801 @default.
- W2779718480 hasOpenAccess W2779718480 @default.
- W2779718480 hasPrimaryLocation W27797184801 @default.
- W2779718480 hasRelatedWork W1964750718 @default.
- W2779718480 hasRelatedWork W1994314272 @default.
- W2779718480 hasRelatedWork W2026801433 @default.
- W2779718480 hasRelatedWork W2027461587 @default.
- W2779718480 hasRelatedWork W2031598767 @default.
- W2779718480 hasRelatedWork W2049534181 @default.
- W2779718480 hasRelatedWork W2065164811 @default.
- W2779718480 hasRelatedWork W2080831006 @default.
- W2779718480 hasRelatedWork W2082054486 @default.
- W2779718480 hasRelatedWork W2089414046 @default.
- W2779718480 hasRelatedWork W2320848090 @default.
- W2779718480 hasRelatedWork W2332909039 @default.
- W2779718480 hasRelatedWork W2766915387 @default.
- W2779718480 hasRelatedWork W2890176040 @default.
- W2779718480 hasRelatedWork W3125678968 @default.
- W2779718480 hasRelatedWork W833634321 @default.
- W2779718480 hasRelatedWork W1508688918 @default.
- W2779718480 hasRelatedWork W2842354823 @default.
- W2779718480 hasRelatedWork W2846207373 @default.
- W2779718480 hasRelatedWork W2852890071 @default.
- W2779718480 isParatext "false" @default.
- W2779718480 isRetracted "false" @default.
- W2779718480 magId "2779718480" @default.
- W2779718480 workType "dissertation" @default.