Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779757316> ?p ?o ?g. }
- W2779757316 endingPage "219" @default.
- W2779757316 startingPage "209" @default.
- W2779757316 abstract "In this paper, we propose a novel text-based traffic sign detection framework with two deep learning components. More precisely, we apply a fully convolutional network to segment candidate traffic sign areas providing candidate regions of interest (RoI), followed by a fast neural network to detect texts on the extracted RoI. The proposed method makes full use of the characteristics of traffic signs to improve the efficiency and accuracy of text detection. On one hand, the proposed two-stage detection method reduces the search area of text detection and removes texts outside traffic signs. On the other hand, it solves the problem of multi-scales for the text detection part to a large extent. Extensive experimental results show that the proposed method achieves the state-of-the-art results on the publicly available traffic sign data set: Traffic Guide Panel data set. In addition, we collect a data set of text-based traffic signs including Chinese and English traffic signs. Our method also performs well on this data set, which demonstrates that the proposed method is general in detecting traffic signs of different languages." @default.
- W2779757316 created "2018-01-05" @default.
- W2779757316 creator A5030174783 @default.
- W2779757316 creator A5032279676 @default.
- W2779757316 creator A5058252339 @default.
- W2779757316 creator A5068185303 @default.
- W2779757316 date "2018-01-01" @default.
- W2779757316 modified "2023-10-18" @default.
- W2779757316 title "Cascaded Segmentation-Detection Networks for Text-Based Traffic Sign Detection" @default.
- W2779757316 cites W1488125194 @default.
- W2779757316 cites W1521064364 @default.
- W2779757316 cites W1536680647 @default.
- W2779757316 cites W1745334888 @default.
- W2779757316 cites W1903029394 @default.
- W2779757316 cites W1966693245 @default.
- W2779757316 cites W1978736542 @default.
- W2779757316 cites W1988461287 @default.
- W2779757316 cites W1991429044 @default.
- W2779757316 cites W2000037265 @default.
- W2779757316 cites W2006590985 @default.
- W2779757316 cites W2012112601 @default.
- W2779757316 cites W2025951822 @default.
- W2779757316 cites W2030138018 @default.
- W2779757316 cites W2061802763 @default.
- W2779757316 cites W2078997308 @default.
- W2779757316 cites W2079854881 @default.
- W2779757316 cites W2097117768 @default.
- W2779757316 cites W2110591696 @default.
- W2779757316 cites W2112316183 @default.
- W2779757316 cites W2113650053 @default.
- W2779757316 cites W2117586922 @default.
- W2779757316 cites W2126628495 @default.
- W2779757316 cites W2131163834 @default.
- W2779757316 cites W2131171972 @default.
- W2779757316 cites W2140670173 @default.
- W2779757316 cites W2142159465 @default.
- W2779757316 cites W2147800946 @default.
- W2779757316 cites W2148214126 @default.
- W2779757316 cites W2148308609 @default.
- W2779757316 cites W2153567777 @default.
- W2779757316 cites W2155893237 @default.
- W2779757316 cites W2158878654 @default.
- W2779757316 cites W2168519618 @default.
- W2779757316 cites W2194187530 @default.
- W2779757316 cites W2194775991 @default.
- W2779757316 cites W2339589954 @default.
- W2779757316 cites W2343052201 @default.
- W2779757316 cites W2480140235 @default.
- W2779757316 cites W2519321174 @default.
- W2779757316 cites W2519528544 @default.
- W2779757316 cites W2519818067 @default.
- W2779757316 cites W2538864697 @default.
- W2779757316 cites W2600889608 @default.
- W2779757316 cites W2605076167 @default.
- W2779757316 cites W2963037989 @default.
- W2779757316 cites W654550266 @default.
- W2779757316 cites W70975097 @default.
- W2779757316 cites W845365781 @default.
- W2779757316 doi "https://doi.org/10.1109/tits.2017.2768827" @default.
- W2779757316 hasPublicationYear "2018" @default.
- W2779757316 type Work @default.
- W2779757316 sameAs 2779757316 @default.
- W2779757316 citedByCount "70" @default.
- W2779757316 countsByYear W27797573162018 @default.
- W2779757316 countsByYear W27797573162019 @default.
- W2779757316 countsByYear W27797573162020 @default.
- W2779757316 countsByYear W27797573162021 @default.
- W2779757316 countsByYear W27797573162022 @default.
- W2779757316 countsByYear W27797573162023 @default.
- W2779757316 crossrefType "journal-article" @default.
- W2779757316 hasAuthorship W2779757316A5030174783 @default.
- W2779757316 hasAuthorship W2779757316A5032279676 @default.
- W2779757316 hasAuthorship W2779757316A5058252339 @default.
- W2779757316 hasAuthorship W2779757316A5068185303 @default.
- W2779757316 hasConcept C108583219 @default.
- W2779757316 hasConcept C124101348 @default.
- W2779757316 hasConcept C134306372 @default.
- W2779757316 hasConcept C139676723 @default.
- W2779757316 hasConcept C153180895 @default.
- W2779757316 hasConcept C154945302 @default.
- W2779757316 hasConcept C177264268 @default.
- W2779757316 hasConcept C19609008 @default.
- W2779757316 hasConcept C199360897 @default.
- W2779757316 hasConcept C2983860417 @default.
- W2779757316 hasConcept C33923547 @default.
- W2779757316 hasConcept C41008148 @default.
- W2779757316 hasConcept C58489278 @default.
- W2779757316 hasConcept C81363708 @default.
- W2779757316 hasConcept C89600930 @default.
- W2779757316 hasConceptScore W2779757316C108583219 @default.
- W2779757316 hasConceptScore W2779757316C124101348 @default.
- W2779757316 hasConceptScore W2779757316C134306372 @default.
- W2779757316 hasConceptScore W2779757316C139676723 @default.
- W2779757316 hasConceptScore W2779757316C153180895 @default.
- W2779757316 hasConceptScore W2779757316C154945302 @default.
- W2779757316 hasConceptScore W2779757316C177264268 @default.
- W2779757316 hasConceptScore W2779757316C19609008 @default.
- W2779757316 hasConceptScore W2779757316C199360897 @default.