Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779920360> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2779920360 abstract "Author(s): Amat, Fernando; Moussavi, Farshid; Horowitz, Mark | Abstract: In recent years there has been increasing interest in using cryo TEM tomography to study cells in close to their native environment. One limitation of this technique is the relatively low signal to noise ratio in each of the TEM images, since the total electron dose through the sample must be constrained to limit structure damage to the cell. Even with gold markers added to the sample, robust automatic alignment of the TEM slice data for reconstruction remains difficult. We have tried to address this problem by leveraging recent work in probabilistic analysis, and have constructed a prototype alignment system using Markov random fields (MRF s) for alignment, and robust optimization methods for projective model estimation. With markers, there are three basic steps required to align the TEM dataset: marker feature identification, correspondence and tracking of these features throughout the image set, and projective model estimation from these feature tracks. In our framework, features are extracted initially using standard template matching techniques like cross correlation. Feature correspondence and tracking is accomplished by constructing a Markov random field (MRF) probabilistic model where contour labels are random variables which take on values of candidate marker feature locations. We use mutual information and the relative geometric positions to estimate a priori marker correspondence probabilities between two images. An approximate probabilistic inference technique called loopy belief propagation (LBP) is then used to calculate the maximum a posteriori assignment of features to contours in the image set. In this technique, rather than a joint distribution (whose complexity is exponential in the number of random variables), a collection of singleton and pairwise distributions is maintained in a special data structure. This data structure contains cycles, and is called a cluster graph. The a priori estimates for these distributions (initial beliefs) are refined by belief propagation, until they converge to roughly the true pairwise distributions (final beliefs). The correspondences of candidate markers to contours are taken directly from these beliefs. Errors in the correspondence are possible due to feature location mistakes as well as inaccurate inference results. Therefore, the projective model estimation uses a robust fitting method as opposed to least squares (the traditionally applied fitting) and is tolerant to outliers. Once we have an estimate of the projective model, the model is iterated using expectation maximization (EM) to re-estimate perceived outliers with improved reprojection data from the current model. This iteration is performed as many times as necessary before a stopping criterion is satisfied, but in our example a small number of iterations is needed (often only one).This robust framework has allowed us to fully automatically recover dozens of contours (both complete and piecewise) with subpixel accuracy from several challenging cryo datasets of bacteria Caulobacter crescentus. The results were used to create 3D reconstructions comparable to results previously obtainable only by extensive manual intervention." @default.
- W2779920360 created "2018-01-05" @default.
- W2779920360 creator A5019619921 @default.
- W2779920360 creator A5060044980 @default.
- W2779920360 creator A5090469068 @default.
- W2779920360 date "2006-08-31" @default.
- W2779920360 modified "2023-09-26" @default.
- W2779920360 title "Automatic Projective Model Estimation and Reconstruction in Cryogenic Electron Tomography" @default.
- W2779920360 hasPublicationYear "2006" @default.
- W2779920360 type Work @default.
- W2779920360 sameAs 2779920360 @default.
- W2779920360 citedByCount "0" @default.
- W2779920360 crossrefType "journal-article" @default.
- W2779920360 hasAuthorship W2779920360A5019619921 @default.
- W2779920360 hasAuthorship W2779920360A5060044980 @default.
- W2779920360 hasAuthorship W2779920360A5090469068 @default.
- W2779920360 hasConcept C105795698 @default.
- W2779920360 hasConcept C111472728 @default.
- W2779920360 hasConcept C11413529 @default.
- W2779920360 hasConcept C114289077 @default.
- W2779920360 hasConcept C115961682 @default.
- W2779920360 hasConcept C124504099 @default.
- W2779920360 hasConcept C130402806 @default.
- W2779920360 hasConcept C138885662 @default.
- W2779920360 hasConcept C152948882 @default.
- W2779920360 hasConcept C153180895 @default.
- W2779920360 hasConcept C154945302 @default.
- W2779920360 hasConcept C2776401178 @default.
- W2779920360 hasConcept C2778045648 @default.
- W2779920360 hasConcept C31972630 @default.
- W2779920360 hasConcept C33923547 @default.
- W2779920360 hasConcept C41008148 @default.
- W2779920360 hasConcept C41895202 @default.
- W2779920360 hasConcept C49781872 @default.
- W2779920360 hasConcept C49937458 @default.
- W2779920360 hasConcept C57273362 @default.
- W2779920360 hasConcept C75553542 @default.
- W2779920360 hasConcept C9810830 @default.
- W2779920360 hasConceptScore W2779920360C105795698 @default.
- W2779920360 hasConceptScore W2779920360C111472728 @default.
- W2779920360 hasConceptScore W2779920360C11413529 @default.
- W2779920360 hasConceptScore W2779920360C114289077 @default.
- W2779920360 hasConceptScore W2779920360C115961682 @default.
- W2779920360 hasConceptScore W2779920360C124504099 @default.
- W2779920360 hasConceptScore W2779920360C130402806 @default.
- W2779920360 hasConceptScore W2779920360C138885662 @default.
- W2779920360 hasConceptScore W2779920360C152948882 @default.
- W2779920360 hasConceptScore W2779920360C153180895 @default.
- W2779920360 hasConceptScore W2779920360C154945302 @default.
- W2779920360 hasConceptScore W2779920360C2776401178 @default.
- W2779920360 hasConceptScore W2779920360C2778045648 @default.
- W2779920360 hasConceptScore W2779920360C31972630 @default.
- W2779920360 hasConceptScore W2779920360C33923547 @default.
- W2779920360 hasConceptScore W2779920360C41008148 @default.
- W2779920360 hasConceptScore W2779920360C41895202 @default.
- W2779920360 hasConceptScore W2779920360C49781872 @default.
- W2779920360 hasConceptScore W2779920360C49937458 @default.
- W2779920360 hasConceptScore W2779920360C57273362 @default.
- W2779920360 hasConceptScore W2779920360C75553542 @default.
- W2779920360 hasConceptScore W2779920360C9810830 @default.
- W2779920360 hasLocation W27799203601 @default.
- W2779920360 hasOpenAccess W2779920360 @default.
- W2779920360 hasPrimaryLocation W27799203601 @default.
- W2779920360 hasRelatedWork W1137906881 @default.
- W2779920360 hasRelatedWork W1567487277 @default.
- W2779920360 hasRelatedWork W1762950600 @default.
- W2779920360 hasRelatedWork W1986265728 @default.
- W2779920360 hasRelatedWork W2040908311 @default.
- W2779920360 hasRelatedWork W2048147571 @default.
- W2779920360 hasRelatedWork W2062810659 @default.
- W2779920360 hasRelatedWork W2118104180 @default.
- W2779920360 hasRelatedWork W2154391109 @default.
- W2779920360 hasRelatedWork W2309862831 @default.
- W2779920360 hasRelatedWork W2521980320 @default.
- W2779920360 hasRelatedWork W2611513495 @default.
- W2779920360 hasRelatedWork W2766745177 @default.
- W2779920360 hasRelatedWork W2768283450 @default.
- W2779920360 hasRelatedWork W2883319513 @default.
- W2779920360 hasRelatedWork W2953207887 @default.
- W2779920360 hasRelatedWork W3082255295 @default.
- W2779920360 hasRelatedWork W3213491370 @default.
- W2779920360 hasRelatedWork W809405061 @default.
- W2779920360 hasRelatedWork W2187480725 @default.
- W2779920360 isParatext "false" @default.
- W2779920360 isRetracted "false" @default.
- W2779920360 magId "2779920360" @default.
- W2779920360 workType "article" @default.