Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779932943> ?p ?o ?g. }
- W2779932943 abstract "The limitations of the existing Knowledge Hyper-surface method in learning cause and effect relationships in the manufacturing process is explored. A new approach to enhance the performance of the current Knowledge Hyper-surface method has been proposed by constructing midpoints between each primary weight along each dimension by using a quadratic Lagrange interpolation polynomial. The new secondary-weight values, generated due to the addition of midpoints, were also represented as a linear combination of the corresponding primary/axial weight values. An improved neural networks in learning from examples have also been proposed where both of the proposed algorithms able to constrain the shape of the surface in two-dimensional and multi-dimensional cases and produced more realistic and acceptable results as compared to the previous version. The ability of the proposed approach to models the exponential increase/decrease in the belief values by using high-ordered polynomials without introducing ‘over-fitting’ effects was investigated. The performance of the proposed method in modelling the exponential increase/decrease in belief values was carried out on real cases taken from real casting data. The computed graphical results of the proposed methods were compared with the current Knowledge Hyper-surface and neural-network methods. As a result, the proposed methods correctly predict the sensitivity of process-parameter variations with the occurrence of a defect and very important area of research in a robust design methodology." @default.
- W2779932943 created "2018-01-05" @default.
- W2779932943 creator A5006730304 @default.
- W2779932943 creator A5030095072 @default.
- W2779932943 creator A5037146106 @default.
- W2779932943 creator A5057195099 @default.
- W2779932943 creator A5075970426 @default.
- W2779932943 creator A5091356686 @default.
- W2779932943 date "2017-12-25" @default.
- W2779932943 modified "2023-09-24" @default.
- W2779932943 title "Cause and Effect Prediction in Manufacturing Process Using an Improved Neural Networks" @default.
- W2779932943 cites W1982057193 @default.
- W2779932943 cites W2047649690 @default.
- W2779932943 cites W2097712401 @default.
- W2779932943 cites W2137983211 @default.
- W2779932943 cites W2155837945 @default.
- W2779932943 cites W2156376770 @default.
- W2779932943 cites W2766736793 @default.
- W2779932943 cites W3096443866 @default.
- W2779932943 doi "https://doi.org/10.18517/ijaseit.7.6.2384" @default.
- W2779932943 hasPublicationYear "2017" @default.
- W2779932943 type Work @default.
- W2779932943 sameAs 2779932943 @default.
- W2779932943 citedByCount "0" @default.
- W2779932943 crossrefType "journal-article" @default.
- W2779932943 hasAuthorship W2779932943A5006730304 @default.
- W2779932943 hasAuthorship W2779932943A5030095072 @default.
- W2779932943 hasAuthorship W2779932943A5037146106 @default.
- W2779932943 hasAuthorship W2779932943A5057195099 @default.
- W2779932943 hasAuthorship W2779932943A5075970426 @default.
- W2779932943 hasAuthorship W2779932943A5091356686 @default.
- W2779932943 hasBestOaLocation W27799329431 @default.
- W2779932943 hasConcept C104114177 @default.
- W2779932943 hasConcept C111919701 @default.
- W2779932943 hasConcept C11413529 @default.
- W2779932943 hasConcept C119599485 @default.
- W2779932943 hasConcept C119857082 @default.
- W2779932943 hasConcept C126255220 @default.
- W2779932943 hasConcept C127413603 @default.
- W2779932943 hasConcept C129844170 @default.
- W2779932943 hasConcept C134306372 @default.
- W2779932943 hasConcept C137800194 @default.
- W2779932943 hasConcept C148043351 @default.
- W2779932943 hasConcept C151376022 @default.
- W2779932943 hasConcept C154945302 @default.
- W2779932943 hasConcept C202444582 @default.
- W2779932943 hasConcept C21200559 @default.
- W2779932943 hasConcept C24326235 @default.
- W2779932943 hasConcept C2524010 @default.
- W2779932943 hasConcept C2776799497 @default.
- W2779932943 hasConcept C33676613 @default.
- W2779932943 hasConcept C33923547 @default.
- W2779932943 hasConcept C34130140 @default.
- W2779932943 hasConcept C41008148 @default.
- W2779932943 hasConcept C50644808 @default.
- W2779932943 hasConcept C64208722 @default.
- W2779932943 hasConcept C90119067 @default.
- W2779932943 hasConcept C98045186 @default.
- W2779932943 hasConceptScore W2779932943C104114177 @default.
- W2779932943 hasConceptScore W2779932943C111919701 @default.
- W2779932943 hasConceptScore W2779932943C11413529 @default.
- W2779932943 hasConceptScore W2779932943C119599485 @default.
- W2779932943 hasConceptScore W2779932943C119857082 @default.
- W2779932943 hasConceptScore W2779932943C126255220 @default.
- W2779932943 hasConceptScore W2779932943C127413603 @default.
- W2779932943 hasConceptScore W2779932943C129844170 @default.
- W2779932943 hasConceptScore W2779932943C134306372 @default.
- W2779932943 hasConceptScore W2779932943C137800194 @default.
- W2779932943 hasConceptScore W2779932943C148043351 @default.
- W2779932943 hasConceptScore W2779932943C151376022 @default.
- W2779932943 hasConceptScore W2779932943C154945302 @default.
- W2779932943 hasConceptScore W2779932943C202444582 @default.
- W2779932943 hasConceptScore W2779932943C21200559 @default.
- W2779932943 hasConceptScore W2779932943C24326235 @default.
- W2779932943 hasConceptScore W2779932943C2524010 @default.
- W2779932943 hasConceptScore W2779932943C2776799497 @default.
- W2779932943 hasConceptScore W2779932943C33676613 @default.
- W2779932943 hasConceptScore W2779932943C33923547 @default.
- W2779932943 hasConceptScore W2779932943C34130140 @default.
- W2779932943 hasConceptScore W2779932943C41008148 @default.
- W2779932943 hasConceptScore W2779932943C50644808 @default.
- W2779932943 hasConceptScore W2779932943C64208722 @default.
- W2779932943 hasConceptScore W2779932943C90119067 @default.
- W2779932943 hasConceptScore W2779932943C98045186 @default.
- W2779932943 hasLocation W27799329431 @default.
- W2779932943 hasOpenAccess W2779932943 @default.
- W2779932943 hasPrimaryLocation W27799329431 @default.
- W2779932943 hasRelatedWork W1520810131 @default.
- W2779932943 hasRelatedWork W2029932722 @default.
- W2779932943 hasRelatedWork W2090951562 @default.
- W2779932943 hasRelatedWork W2101836785 @default.
- W2779932943 hasRelatedWork W2111347420 @default.
- W2779932943 hasRelatedWork W2118191072 @default.
- W2779932943 hasRelatedWork W2271375281 @default.
- W2779932943 hasRelatedWork W2315382193 @default.
- W2779932943 hasRelatedWork W2366122389 @default.
- W2779932943 hasRelatedWork W2373162059 @default.
- W2779932943 hasRelatedWork W2376445609 @default.
- W2779932943 hasRelatedWork W2385556819 @default.
- W2779932943 hasRelatedWork W2392823942 @default.