Matches in SemOpenAlex for { <https://semopenalex.org/work/W2779959161> ?p ?o ?g. }
- W2779959161 abstract "Variational autoencoders (VAE) represent a popular, flexible form of deep generative model that can be stochastically fit to samples from a given random process using an information-theoretic variational bound on the true underlying distribution. Once so-obtained, the model can be putatively used to generate new samples from this distribution, or to provide a low-dimensional latent representation of existing samples. While quite effective in numerous application domains, certain important mechanisms which govern the behavior of the VAE are obfuscated by the intractable integrals and resulting stochastic approximations involved. Moreover, as a highly non-convex model, it remains unclear exactly how minima of the underlying energy relate to original design purposes. We attempt to better quantify these issues by analyzing a series of tractable special cases of increasing complexity. In doing so, we unveil interesting connections with more traditional dimensionality reduction models, as well as an intrinsic yet underappreciated propensity for robustly dismissing sparse outliers when estimating latent manifolds. With respect to the latter, we demonstrate that the VAE can be viewed as the natural evolution of recent robust PCA models, capable of learning nonlinear manifolds of unknown dimension obscured by gross corruptions." @default.
- W2779959161 created "2018-01-05" @default.
- W2779959161 creator A5005995567 @default.
- W2779959161 creator A5079594267 @default.
- W2779959161 creator A5081114810 @default.
- W2779959161 creator A5085016531 @default.
- W2779959161 creator A5089035453 @default.
- W2779959161 date "2017-06-16" @default.
- W2779959161 modified "2023-09-24" @default.
- W2779959161 title "Hidden Talents of the Variational Autoencoder." @default.
- W2779959161 cites W114517082 @default.
- W2779959161 cites W1522301498 @default.
- W2779959161 cites W1677182931 @default.
- W2779959161 cites W1710476689 @default.
- W2779959161 cites W1736339626 @default.
- W2779959161 cites W1899249567 @default.
- W2779959161 cites W1959608418 @default.
- W2779959161 cites W1986931325 @default.
- W2779959161 cites W1993962865 @default.
- W2779959161 cites W2017257315 @default.
- W2779959161 cites W2017415695 @default.
- W2779959161 cites W2060542838 @default.
- W2779959161 cites W2072128103 @default.
- W2779959161 cites W2108501770 @default.
- W2779959161 cites W2112796928 @default.
- W2779959161 cites W2125027820 @default.
- W2779959161 cites W2125655865 @default.
- W2779959161 cites W2141159272 @default.
- W2779959161 cites W2145962650 @default.
- W2779959161 cites W2150414161 @default.
- W2779959161 cites W2154332973 @default.
- W2779959161 cites W2160915541 @default.
- W2779959161 cites W2166221887 @default.
- W2779959161 cites W2202109488 @default.
- W2779959161 cites W2269892441 @default.
- W2779959161 cites W2296319761 @default.
- W2779959161 cites W2399306074 @default.
- W2779959161 cites W2557283755 @default.
- W2779959161 cites W2587284713 @default.
- W2779959161 cites W2601424732 @default.
- W2779959161 cites W2772176451 @default.
- W2779959161 cites W2899379230 @default.
- W2779959161 cites W2949416428 @default.
- W2779959161 cites W2953318193 @default.
- W2779959161 cites W2962820504 @default.
- W2779959161 cites W2962897886 @default.
- W2779959161 cites W2963043971 @default.
- W2779959161 cites W2963049629 @default.
- W2779959161 cites W2963143316 @default.
- W2779959161 cites W2963174698 @default.
- W2779959161 cites W2963275229 @default.
- W2779959161 cites W2963446085 @default.
- W2779959161 cites W2963504252 @default.
- W2779959161 cites W3104624268 @default.
- W2779959161 cites W610168151 @default.
- W2779959161 hasPublicationYear "2017" @default.
- W2779959161 type Work @default.
- W2779959161 sameAs 2779959161 @default.
- W2779959161 citedByCount "8" @default.
- W2779959161 countsByYear W27799591612018 @default.
- W2779959161 countsByYear W27799591612019 @default.
- W2779959161 countsByYear W27799591612020 @default.
- W2779959161 crossrefType "posted-content" @default.
- W2779959161 hasAuthorship W2779959161A5005995567 @default.
- W2779959161 hasAuthorship W2779959161A5079594267 @default.
- W2779959161 hasAuthorship W2779959161A5081114810 @default.
- W2779959161 hasAuthorship W2779959161A5085016531 @default.
- W2779959161 hasAuthorship W2779959161A5089035453 @default.
- W2779959161 hasConcept C101738243 @default.
- W2779959161 hasConcept C108583219 @default.
- W2779959161 hasConcept C111030470 @default.
- W2779959161 hasConcept C11413529 @default.
- W2779959161 hasConcept C119857082 @default.
- W2779959161 hasConcept C134306372 @default.
- W2779959161 hasConcept C154945302 @default.
- W2779959161 hasConcept C167966045 @default.
- W2779959161 hasConcept C17744445 @default.
- W2779959161 hasConcept C186633575 @default.
- W2779959161 hasConcept C199539241 @default.
- W2779959161 hasConcept C202444582 @default.
- W2779959161 hasConcept C2776359362 @default.
- W2779959161 hasConcept C33676613 @default.
- W2779959161 hasConcept C33923547 @default.
- W2779959161 hasConcept C39890363 @default.
- W2779959161 hasConcept C41008148 @default.
- W2779959161 hasConcept C70518039 @default.
- W2779959161 hasConcept C79337645 @default.
- W2779959161 hasConcept C94625758 @default.
- W2779959161 hasConceptScore W2779959161C101738243 @default.
- W2779959161 hasConceptScore W2779959161C108583219 @default.
- W2779959161 hasConceptScore W2779959161C111030470 @default.
- W2779959161 hasConceptScore W2779959161C11413529 @default.
- W2779959161 hasConceptScore W2779959161C119857082 @default.
- W2779959161 hasConceptScore W2779959161C134306372 @default.
- W2779959161 hasConceptScore W2779959161C154945302 @default.
- W2779959161 hasConceptScore W2779959161C167966045 @default.
- W2779959161 hasConceptScore W2779959161C17744445 @default.
- W2779959161 hasConceptScore W2779959161C186633575 @default.
- W2779959161 hasConceptScore W2779959161C199539241 @default.
- W2779959161 hasConceptScore W2779959161C202444582 @default.