Matches in SemOpenAlex for { <https://semopenalex.org/work/W2780776411> ?p ?o ?g. }
- W2780776411 endingPage "388" @default.
- W2780776411 startingPage "379" @default.
- W2780776411 abstract "The aim of this study is to assess the possibility of forecasting water level fluctuations in a relatively small (<100 km2), post-glacial lake located in a temperate climate zone by means of artificial neural networks and multiple linear regression. The area of study was Lake Serwy, located in northeastern Poland. Two artificial neural network (ANN) multilayer perceptron (MLP) and multiple linear regression (MLR) models were built. The following explanatory variables were considered: maximal and minimal temperature (Tmax, Tmin) wind speed (WS), vertical circulation (VC) and water level from previous periods (WL). Additionally, a binary variable describing the period of the year (winter, summer) has been considered in one of the two MLP and MLR models. The forecasting models have been assessed based on selected criteria: mean absolute percentage error (MAPE), root mean squared error (RMSE), coefficient of determination (R2) and mean biased error. Considering their values and absolute deviations from observed values it was concluded that the ANN model using an additional binary variable (MLP_B+) has the best forecasting performance. Absolute deviations from observed values were the determining factor which made this model the most efficient. In the case of the MLP_B+ model, those values were about 10% lower than in other models. The conducted analyses indicated good performance of ANN networks as a forecasting tool for relatively small lakes located in temperate climate zones. It is acknowledged that they enable water level forecasting with greater precision and lower absolute deviations than the use of multiple linear regression models." @default.
- W2780776411 created "2018-01-05" @default.
- W2780776411 creator A5003414391 @default.
- W2780776411 creator A5009380635 @default.
- W2780776411 creator A5031199805 @default.
- W2780776411 date "2017-12-21" @default.
- W2780776411 modified "2023-10-12" @default.
- W2780776411 title "FORECASTING SURFACE WATER LEVEL FLUCTUATIONS OF LAKE SERWY (NORTHEASTERN POLAND) BY ARTIFICIAL NEURAL NETWORKS AND MULTIPLE LINEAR REGRESSION" @default.
- W2780776411 cites W1489924051 @default.
- W2780776411 cites W1908803173 @default.
- W2780776411 cites W1965024878 @default.
- W2780776411 cites W1965489069 @default.
- W2780776411 cites W1965513101 @default.
- W2780776411 cites W1982201779 @default.
- W2780776411 cites W1992659833 @default.
- W2780776411 cites W1994904501 @default.
- W2780776411 cites W1998893231 @default.
- W2780776411 cites W2008932119 @default.
- W2780776411 cites W2017198208 @default.
- W2780776411 cites W2019451733 @default.
- W2780776411 cites W2026063266 @default.
- W2780776411 cites W2033332045 @default.
- W2780776411 cites W2037460094 @default.
- W2780776411 cites W2039362415 @default.
- W2780776411 cites W2041534329 @default.
- W2780776411 cites W2046785557 @default.
- W2780776411 cites W2059900095 @default.
- W2780776411 cites W2062981820 @default.
- W2780776411 cites W2065329923 @default.
- W2780776411 cites W2072697915 @default.
- W2780776411 cites W2079415691 @default.
- W2780776411 cites W2084526672 @default.
- W2780776411 cites W2086688658 @default.
- W2780776411 cites W2101038146 @default.
- W2780776411 cites W2101057134 @default.
- W2780776411 cites W2139310112 @default.
- W2780776411 cites W2157543243 @default.
- W2780776411 cites W2164017619 @default.
- W2780776411 cites W2165313910 @default.
- W2780776411 cites W2167170348 @default.
- W2780776411 cites W2171265774 @default.
- W2780776411 cites W2326423017 @default.
- W2780776411 cites W4231333952 @default.
- W2780776411 cites W4249028950 @default.
- W2780776411 cites W4376595336 @default.
- W2780776411 cites W526231 @default.
- W2780776411 doi "https://doi.org/10.3846/16486897.2017.1303498" @default.
- W2780776411 hasPublicationYear "2017" @default.
- W2780776411 type Work @default.
- W2780776411 sameAs 2780776411 @default.
- W2780776411 citedByCount "15" @default.
- W2780776411 countsByYear W27807764112019 @default.
- W2780776411 countsByYear W27807764112020 @default.
- W2780776411 countsByYear W27807764112021 @default.
- W2780776411 countsByYear W27807764112022 @default.
- W2780776411 countsByYear W27807764112023 @default.
- W2780776411 crossrefType "journal-article" @default.
- W2780776411 hasAuthorship W2780776411A5003414391 @default.
- W2780776411 hasAuthorship W2780776411A5009380635 @default.
- W2780776411 hasAuthorship W2780776411A5031199805 @default.
- W2780776411 hasBestOaLocation W27807764111 @default.
- W2780776411 hasConcept C105795698 @default.
- W2780776411 hasConcept C119857082 @default.
- W2780776411 hasConcept C120934525 @default.
- W2780776411 hasConcept C128990827 @default.
- W2780776411 hasConcept C139945424 @default.
- W2780776411 hasConcept C150217764 @default.
- W2780776411 hasConcept C152877465 @default.
- W2780776411 hasConcept C153294291 @default.
- W2780776411 hasConcept C161067210 @default.
- W2780776411 hasConcept C163175372 @default.
- W2780776411 hasConcept C179717631 @default.
- W2780776411 hasConcept C18903297 @default.
- W2780776411 hasConcept C205649164 @default.
- W2780776411 hasConcept C22679943 @default.
- W2780776411 hasConcept C33923547 @default.
- W2780776411 hasConcept C39432304 @default.
- W2780776411 hasConcept C41008148 @default.
- W2780776411 hasConcept C48921125 @default.
- W2780776411 hasConcept C50644808 @default.
- W2780776411 hasConcept C60908668 @default.
- W2780776411 hasConcept C81461190 @default.
- W2780776411 hasConcept C83546350 @default.
- W2780776411 hasConcept C86803240 @default.
- W2780776411 hasConceptScore W2780776411C105795698 @default.
- W2780776411 hasConceptScore W2780776411C119857082 @default.
- W2780776411 hasConceptScore W2780776411C120934525 @default.
- W2780776411 hasConceptScore W2780776411C128990827 @default.
- W2780776411 hasConceptScore W2780776411C139945424 @default.
- W2780776411 hasConceptScore W2780776411C150217764 @default.
- W2780776411 hasConceptScore W2780776411C152877465 @default.
- W2780776411 hasConceptScore W2780776411C153294291 @default.
- W2780776411 hasConceptScore W2780776411C161067210 @default.
- W2780776411 hasConceptScore W2780776411C163175372 @default.
- W2780776411 hasConceptScore W2780776411C179717631 @default.
- W2780776411 hasConceptScore W2780776411C18903297 @default.
- W2780776411 hasConceptScore W2780776411C205649164 @default.
- W2780776411 hasConceptScore W2780776411C22679943 @default.