Matches in SemOpenAlex for { <https://semopenalex.org/work/W2781027040> ?p ?o ?g. }
- W2781027040 endingPage "139" @default.
- W2781027040 startingPage "125" @default.
- W2781027040 abstract "Scalable data processing platforms built on cloud computing becomes increasingly attractive as infrastructure for supporting big data applications. But privacy concerns are one of the major obstacles to making use of public cloud platforms. Multidimensional anonymisation, a global-recoding generalisation scheme for privacy-preserving data publishing, has been a recent focus due to its capability of balancing data obfuscation and usability. Existing multidimensional anonymisation methods suffer from scalability problems when handling big data due to the impractical serial I/O cost. Given the recursive feature of multidimensional anonymisation, parallelisation is an ideal solution to scalability issues. However, it is still a challenge to use existing distributed and parallel paradigms directly for recursive computation. In this paper, we propose a scalable approach for big data multidimensional anonymisation based on MapReduce, a state-of-the-art data processing paradigm. Our basic idea is to partition a data set recursively into smaller partitions using MapReduce until all partitions can fit in the memory of a computing node. A tree indexing structure is proposed to achieve recursive computation. Moreover, we show the applicability of our approach to differential privacy. Experimental results on real-life data demonstrate that our approach can significantly improve the scalability of multidimensional anonymisation over existing methods." @default.
- W2781027040 created "2018-01-05" @default.
- W2781027040 creator A5001645149 @default.
- W2781027040 creator A5006514077 @default.
- W2781027040 creator A5023499987 @default.
- W2781027040 creator A5038791483 @default.
- W2781027040 creator A5069895484 @default.
- W2781027040 creator A5076120553 @default.
- W2781027040 creator A5088166627 @default.
- W2781027040 date "2022-02-01" @default.
- W2781027040 modified "2023-10-08" @default.
- W2781027040 title "MRMondrian: Scalable Multidimensional Anonymisation for Big Data Privacy Preservation" @default.
- W2781027040 cites W1967831627 @default.
- W2781027040 cites W1968752677 @default.
- W2781027040 cites W1979005794 @default.
- W2781027040 cites W1988287322 @default.
- W2781027040 cites W1989135185 @default.
- W2781027040 cites W1992286709 @default.
- W2781027040 cites W1996641400 @default.
- W2781027040 cites W1997661122 @default.
- W2781027040 cites W1998654583 @default.
- W2781027040 cites W2001319506 @default.
- W2781027040 cites W2005107218 @default.
- W2781027040 cites W2005991660 @default.
- W2781027040 cites W2009331946 @default.
- W2781027040 cites W2024668293 @default.
- W2781027040 cites W2038873345 @default.
- W2781027040 cites W2040263621 @default.
- W2781027040 cites W2059900053 @default.
- W2781027040 cites W2070600700 @default.
- W2781027040 cites W2081416313 @default.
- W2781027040 cites W2096870293 @default.
- W2781027040 cites W2118944554 @default.
- W2781027040 cites W2119244393 @default.
- W2781027040 cites W2122290076 @default.
- W2781027040 cites W2123820077 @default.
- W2781027040 cites W2134167315 @default.
- W2781027040 cites W2135581534 @default.
- W2781027040 cites W2142406320 @default.
- W2781027040 cites W2154138844 @default.
- W2781027040 cites W2157355837 @default.
- W2781027040 cites W2158037536 @default.
- W2781027040 cites W2159024459 @default.
- W2781027040 cites W2163882872 @default.
- W2781027040 cites W2164364358 @default.
- W2781027040 cites W2164812149 @default.
- W2781027040 cites W2549630235 @default.
- W2781027040 cites W2911978475 @default.
- W2781027040 doi "https://doi.org/10.1109/tbdata.2017.2787661" @default.
- W2781027040 hasPublicationYear "2022" @default.
- W2781027040 type Work @default.
- W2781027040 sameAs 2781027040 @default.
- W2781027040 citedByCount "17" @default.
- W2781027040 countsByYear W27810270402018 @default.
- W2781027040 countsByYear W27810270402019 @default.
- W2781027040 countsByYear W27810270402020 @default.
- W2781027040 countsByYear W27810270402022 @default.
- W2781027040 countsByYear W27810270402023 @default.
- W2781027040 crossrefType "journal-article" @default.
- W2781027040 hasAuthorship W2781027040A5001645149 @default.
- W2781027040 hasAuthorship W2781027040A5006514077 @default.
- W2781027040 hasAuthorship W2781027040A5023499987 @default.
- W2781027040 hasAuthorship W2781027040A5038791483 @default.
- W2781027040 hasAuthorship W2781027040A5069895484 @default.
- W2781027040 hasAuthorship W2781027040A5076120553 @default.
- W2781027040 hasAuthorship W2781027040A5088166627 @default.
- W2781027040 hasConcept C111919701 @default.
- W2781027040 hasConcept C11413529 @default.
- W2781027040 hasConcept C120314980 @default.
- W2781027040 hasConcept C123201435 @default.
- W2781027040 hasConcept C124101348 @default.
- W2781027040 hasConcept C23130292 @default.
- W2781027040 hasConcept C38652104 @default.
- W2781027040 hasConcept C41008148 @default.
- W2781027040 hasConcept C45374587 @default.
- W2781027040 hasConcept C48044578 @default.
- W2781027040 hasConcept C75684735 @default.
- W2781027040 hasConcept C77088390 @default.
- W2781027040 hasConcept C79974875 @default.
- W2781027040 hasConcept C80444323 @default.
- W2781027040 hasConceptScore W2781027040C111919701 @default.
- W2781027040 hasConceptScore W2781027040C11413529 @default.
- W2781027040 hasConceptScore W2781027040C120314980 @default.
- W2781027040 hasConceptScore W2781027040C123201435 @default.
- W2781027040 hasConceptScore W2781027040C124101348 @default.
- W2781027040 hasConceptScore W2781027040C23130292 @default.
- W2781027040 hasConceptScore W2781027040C38652104 @default.
- W2781027040 hasConceptScore W2781027040C41008148 @default.
- W2781027040 hasConceptScore W2781027040C45374587 @default.
- W2781027040 hasConceptScore W2781027040C48044578 @default.
- W2781027040 hasConceptScore W2781027040C75684735 @default.
- W2781027040 hasConceptScore W2781027040C77088390 @default.
- W2781027040 hasConceptScore W2781027040C79974875 @default.
- W2781027040 hasConceptScore W2781027040C80444323 @default.
- W2781027040 hasFunder F4320321001 @default.
- W2781027040 hasFunder F4320335777 @default.
- W2781027040 hasIssue "1" @default.
- W2781027040 hasLocation W27810270401 @default.