Matches in SemOpenAlex for { <https://semopenalex.org/work/W2781093322> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2781093322 abstract "Internet is now vested with new form of societal interactive activities like social media, online portals, feeds, reviews, ratings, posts, critics etc., where people are able to post their expression-of-interest as tweets. Sentiment Analysis (SA) is used for better understanding of such linguistics tweets, extracting features, determine subjectivity and polarity of text located in these tweets. SA inherits text mining approach to process, investigate, and analyze idiosyncratic evidences from text. Now a days, SA was screamed as one of a predictor tool for improvement in knowledge management, revenue generation and decision-making in many businesses firms. The purpose of this work is to leverage a constructive tactic for SA towards dispensation of cognitive information, and seed pragmatic alley to researchers in cognitive science community. This study uses machine learning packages of R language over cognitive data to gain knowledge, discover sentiment polarity and better prediction over the data. To carry out a semantic study over cognitive data we thrived text from numerous numbers of social networking sites. This data was articulated in form of unstructured sentences, words and phrases in a document. Suitable linguistic features are captured to engender dissimilar sentiment polarity and analyze expression-of-interest of user. One of the most prevalent text classification method, Naive bayes is applied over the text corpus to pinpoint the sentiment and assign its polarity. The connotation in this approaches are evaluated in terms of statistical measures precision, recall, f-measure, and accuracy, thereby these substantial outcomes help to arcade user behavior and predict future trends using SA." @default.
- W2781093322 created "2018-01-05" @default.
- W2781093322 creator A5001076624 @default.
- W2781093322 creator A5031134921 @default.
- W2781093322 date "2017-12-27" @default.
- W2781093322 modified "2023-10-03" @default.
- W2781093322 title "Sentimental Analysis on Cognitive Data Using R" @default.
- W2781093322 cites W1924137967 @default.
- W2781093322 cites W2019759670 @default.
- W2781093322 cites W2081331923 @default.
- W2781093322 cites W2269995117 @default.
- W2781093322 cites W2401379394 @default.
- W2781093322 cites W2477550225 @default.
- W2781093322 cites W2538942427 @default.
- W2781093322 doi "https://doi.org/10.1007/978-981-10-6653-5_2" @default.
- W2781093322 hasPublicationYear "2017" @default.
- W2781093322 type Work @default.
- W2781093322 sameAs 2781093322 @default.
- W2781093322 citedByCount "2" @default.
- W2781093322 countsByYear W27810933222019 @default.
- W2781093322 countsByYear W27810933222021 @default.
- W2781093322 crossrefType "book-chapter" @default.
- W2781093322 hasAuthorship W2781093322A5001076624 @default.
- W2781093322 hasAuthorship W2781093322A5031134921 @default.
- W2781093322 hasConcept C12267149 @default.
- W2781093322 hasConcept C136764020 @default.
- W2781093322 hasConcept C153083717 @default.
- W2781093322 hasConcept C154945302 @default.
- W2781093322 hasConcept C15744967 @default.
- W2781093322 hasConcept C169760540 @default.
- W2781093322 hasConcept C169900460 @default.
- W2781093322 hasConcept C204321447 @default.
- W2781093322 hasConcept C23123220 @default.
- W2781093322 hasConcept C2522767166 @default.
- W2781093322 hasConcept C41008148 @default.
- W2781093322 hasConcept C518677369 @default.
- W2781093322 hasConcept C52001869 @default.
- W2781093322 hasConcept C66402592 @default.
- W2781093322 hasConceptScore W2781093322C12267149 @default.
- W2781093322 hasConceptScore W2781093322C136764020 @default.
- W2781093322 hasConceptScore W2781093322C153083717 @default.
- W2781093322 hasConceptScore W2781093322C154945302 @default.
- W2781093322 hasConceptScore W2781093322C15744967 @default.
- W2781093322 hasConceptScore W2781093322C169760540 @default.
- W2781093322 hasConceptScore W2781093322C169900460 @default.
- W2781093322 hasConceptScore W2781093322C204321447 @default.
- W2781093322 hasConceptScore W2781093322C23123220 @default.
- W2781093322 hasConceptScore W2781093322C2522767166 @default.
- W2781093322 hasConceptScore W2781093322C41008148 @default.
- W2781093322 hasConceptScore W2781093322C518677369 @default.
- W2781093322 hasConceptScore W2781093322C52001869 @default.
- W2781093322 hasConceptScore W2781093322C66402592 @default.
- W2781093322 hasLocation W27810933221 @default.
- W2781093322 hasOpenAccess W2781093322 @default.
- W2781093322 hasPrimaryLocation W27810933221 @default.
- W2781093322 hasRelatedWork W1632594863 @default.
- W2781093322 hasRelatedWork W1994645462 @default.
- W2781093322 hasRelatedWork W2133740080 @default.
- W2781093322 hasRelatedWork W2189204367 @default.
- W2781093322 hasRelatedWork W2537564435 @default.
- W2781093322 hasRelatedWork W2564433506 @default.
- W2781093322 hasRelatedWork W2755600986 @default.
- W2781093322 hasRelatedWork W2759866268 @default.
- W2781093322 hasRelatedWork W2765903680 @default.
- W2781093322 hasRelatedWork W2896764677 @default.
- W2781093322 hasRelatedWork W2902285665 @default.
- W2781093322 hasRelatedWork W2905219431 @default.
- W2781093322 hasRelatedWork W2990361086 @default.
- W2781093322 hasRelatedWork W3022082609 @default.
- W2781093322 hasRelatedWork W3025174891 @default.
- W2781093322 hasRelatedWork W3097243582 @default.
- W2781093322 hasRelatedWork W3115123827 @default.
- W2781093322 hasRelatedWork W3174646436 @default.
- W2781093322 hasRelatedWork W3210106783 @default.
- W2781093322 hasRelatedWork W2394911770 @default.
- W2781093322 isParatext "false" @default.
- W2781093322 isRetracted "false" @default.
- W2781093322 magId "2781093322" @default.
- W2781093322 workType "book-chapter" @default.