Matches in SemOpenAlex for { <https://semopenalex.org/work/W2781571166> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2781571166 endingPage "122" @default.
- W2781571166 startingPage "105" @default.
- W2781571166 abstract "Abstract The Aviation Safety Reporting System includes over a million confidential reports describing aviation safety incidents. Natural language processing techniques allow for relatively rapid and largely automated analysis of large collections of text data. Interpretation of the results and further investigations by subject matter experts can produce meaningful results. This explains the many commercial and academic applications of natural language processing to aviation safety reports. Relatively few published articles have, however, employed topic modeling, an approach that can identify latent structure within a corpus of documents. Topic modeling is more flexible and relies less on subject matter experts than alternative document categorization and clustering methods. It can, for example, uncover any number of topics hidden in a set of incident reports that have been, or would be, assigned to the same category when using labels and methods applied in earlier research. This article describes the application of structural topic modeling to Aviation Safety Reporting System data. The application identifies known issues. The method also reveals previously unreported connections. Sample results reported here highlight fuel pump, tank, and landing gear issues and the relative insignificance of smoke and fire issues for private aircraft. The results also reveal the prominence of the Quiet Bridge Visual and Tip Toe Visual approach paths at San Francisco International Airport in safety incident reports. These results would, ideally, be verified by subject matter experts before being used to set priorities when planning future safety studies." @default.
- W2781571166 created "2018-01-12" @default.
- W2781571166 creator A5070675890 @default.
- W2781571166 date "2018-02-01" @default.
- W2781571166 modified "2023-10-14" @default.
- W2781571166 title "Using structural topic modeling to identify latent topics and trends in aviation incident reports" @default.
- W2781571166 cites W1537576892 @default.
- W2781571166 cites W1753361524 @default.
- W2781571166 cites W2016747247 @default.
- W2781571166 cites W2056859417 @default.
- W2781571166 cites W2059895375 @default.
- W2781571166 cites W2096974619 @default.
- W2781571166 cites W2118205358 @default.
- W2781571166 cites W2133898263 @default.
- W2781571166 cites W2136082505 @default.
- W2781571166 cites W2144100511 @default.
- W2781571166 cites W2151388686 @default.
- W2781571166 cites W2165418064 @default.
- W2781571166 cites W2174706414 @default.
- W2781571166 cites W2179362017 @default.
- W2781571166 cites W2293378350 @default.
- W2781571166 cites W2294139990 @default.
- W2781571166 cites W2329348942 @default.
- W2781571166 cites W2338179207 @default.
- W2781571166 cites W2460755166 @default.
- W2781571166 cites W2580318018 @default.
- W2781571166 cites W2610964036 @default.
- W2781571166 cites W2767046827 @default.
- W2781571166 cites W2963048283 @default.
- W2781571166 cites W3102570554 @default.
- W2781571166 cites W3126002595 @default.
- W2781571166 doi "https://doi.org/10.1016/j.trc.2017.12.018" @default.
- W2781571166 hasPublicationYear "2018" @default.
- W2781571166 type Work @default.
- W2781571166 sameAs 2781571166 @default.
- W2781571166 citedByCount "117" @default.
- W2781571166 countsByYear W27815711662018 @default.
- W2781571166 countsByYear W27815711662019 @default.
- W2781571166 countsByYear W27815711662020 @default.
- W2781571166 countsByYear W27815711662021 @default.
- W2781571166 countsByYear W27815711662022 @default.
- W2781571166 countsByYear W27815711662023 @default.
- W2781571166 crossrefType "journal-article" @default.
- W2781571166 hasAuthorship W2781571166A5070675890 @default.
- W2781571166 hasConcept C127413603 @default.
- W2781571166 hasConcept C146978453 @default.
- W2781571166 hasConcept C171686336 @default.
- W2781571166 hasConcept C23123220 @default.
- W2781571166 hasConcept C2522767166 @default.
- W2781571166 hasConcept C41008148 @default.
- W2781571166 hasConcept C74448152 @default.
- W2781571166 hasConceptScore W2781571166C127413603 @default.
- W2781571166 hasConceptScore W2781571166C146978453 @default.
- W2781571166 hasConceptScore W2781571166C171686336 @default.
- W2781571166 hasConceptScore W2781571166C23123220 @default.
- W2781571166 hasConceptScore W2781571166C2522767166 @default.
- W2781571166 hasConceptScore W2781571166C41008148 @default.
- W2781571166 hasConceptScore W2781571166C74448152 @default.
- W2781571166 hasLocation W27815711661 @default.
- W2781571166 hasOpenAccess W2781571166 @default.
- W2781571166 hasPrimaryLocation W27815711661 @default.
- W2781571166 hasRelatedWork W2101955803 @default.
- W2781571166 hasRelatedWork W2119214692 @default.
- W2781571166 hasRelatedWork W2144190808 @default.
- W2781571166 hasRelatedWork W2354429408 @default.
- W2781571166 hasRelatedWork W2357241418 @default.
- W2781571166 hasRelatedWork W2366644548 @default.
- W2781571166 hasRelatedWork W2370554703 @default.
- W2781571166 hasRelatedWork W2376314740 @default.
- W2781571166 hasRelatedWork W2384888906 @default.
- W2781571166 hasRelatedWork W2469626427 @default.
- W2781571166 hasVolume "87" @default.
- W2781571166 isParatext "false" @default.
- W2781571166 isRetracted "false" @default.
- W2781571166 magId "2781571166" @default.
- W2781571166 workType "article" @default.