Matches in SemOpenAlex for { <https://semopenalex.org/work/W2781654178> ?p ?o ?g. }
- W2781654178 endingPage "98" @default.
- W2781654178 startingPage "88" @default.
- W2781654178 abstract "Abstract The natural fallout radionuclide 7Be is used as a tracer allowing estimates of soil redistribution on an event-based time scale. The observed 7Be inventory in the soil is converted to soil redistribution by comparing the 7Be inventory at a stable reference site to the location of interest and taking the 7Be depth distribution in the surface soil into account. The relaxation mass depth (h0), describing this depth distribution, is assumed to be uniform across the study area, whereas the 7Be inventory at the reference site represents the balance of atmospheric 7Be input and radioactive decay. The 7Be reference inventory should, therefore, not be influenced by soil redistribution or by any variation in physico-chemical characteristics of the soil within the entire study area. Most studies to date use 7Be to monitor soil redistribution on the spatial scale of a hillslope. However, if the assumptions of spatially uniform fallout and rapid and irreversible sorption of 7Be to soil particles can be extended over a larger area, 7Be could be used to monitor soil redistribution at the catchment scale. In this paper, the variability in 7Be distribution in the soil at hillslope and catchment scales is explored and possible sources of this variability are identified. To assess the impact of variability in soil hydraulic conductivity on the depth penetration of 7Be in surface soil, a rainfall simulation experiment with 9Be spiked rainfall was performed on artificially compacted soil cores. These rainfall simulation experiments indicated a significant positive correlation between the saturated hydraulic conductivity (Ksat) and the relaxation mass depth and, thus, demonstrated that the assumption of a spatially constant relaxation mass depth is likely to be invalid. An empirical correction factor is proposed to circumvent this problem. This work demonstrates the importance of assessing variability in soil hydrological properties across a study area and is also relevant to studies concerning the vertical transport of fallout contaminants in surface soil. To assess spatial variability in fallout across a catchment and across soil types, soil trays containing different soil types were placed at three reference locations in a small catchment of 8 km2 across a nine month period. The spatial variation in 7Be reference inventory between the sites in the catchment was not larger than the variation within one reference site (37% and 36% respectively), indicating that the uncertainty on the reference inventory will be similar over the small catchment. However, the different soil types displayed diverse 7Be depth profiles and total 7Be inventories, suggesting that a clear understanding of sorption behavior across the soil types present in a catchment is needed prior to the use of 7Be as a catchment-scale sediment tracer." @default.
- W2781654178 created "2018-01-12" @default.
- W2781654178 creator A5012160633 @default.
- W2781654178 creator A5027682068 @default.
- W2781654178 creator A5038175498 @default.
- W2781654178 creator A5043051967 @default.
- W2781654178 creator A5053675132 @default.
- W2781654178 creator A5082193418 @default.
- W2781654178 creator A5086392055 @default.
- W2781654178 creator A5089801645 @default.
- W2781654178 date "2018-05-01" @default.
- W2781654178 modified "2023-09-24" @default.
- W2781654178 title "Impact of soil hydrological properties on the 7Be depth distribution and the spatial variation of 7Be inventories across a small catchment" @default.
- W2781654178 cites W1532742665 @default.
- W2781654178 cites W1952458725 @default.
- W2781654178 cites W1958444319 @default.
- W2781654178 cites W1976801716 @default.
- W2781654178 cites W1977644560 @default.
- W2781654178 cites W1978651890 @default.
- W2781654178 cites W1979995260 @default.
- W2781654178 cites W1982543580 @default.
- W2781654178 cites W1994073404 @default.
- W2781654178 cites W1998736732 @default.
- W2781654178 cites W2001281381 @default.
- W2781654178 cites W2003915625 @default.
- W2781654178 cites W2018017385 @default.
- W2781654178 cites W2020205459 @default.
- W2781654178 cites W2024828755 @default.
- W2781654178 cites W2025982694 @default.
- W2781654178 cites W2027795060 @default.
- W2781654178 cites W2030482553 @default.
- W2781654178 cites W2037071918 @default.
- W2781654178 cites W2039504112 @default.
- W2781654178 cites W2039820339 @default.
- W2781654178 cites W2040810623 @default.
- W2781654178 cites W2045054192 @default.
- W2781654178 cites W2047022600 @default.
- W2781654178 cites W2048462209 @default.
- W2781654178 cites W2049773127 @default.
- W2781654178 cites W2053554487 @default.
- W2781654178 cites W2053581277 @default.
- W2781654178 cites W2054792369 @default.
- W2781654178 cites W2058028946 @default.
- W2781654178 cites W2061436185 @default.
- W2781654178 cites W2065553529 @default.
- W2781654178 cites W2066661831 @default.
- W2781654178 cites W2068702677 @default.
- W2781654178 cites W2068711285 @default.
- W2781654178 cites W2070072033 @default.
- W2781654178 cites W2080921622 @default.
- W2781654178 cites W2081292355 @default.
- W2781654178 cites W2084449668 @default.
- W2781654178 cites W2085061113 @default.
- W2781654178 cites W2089634239 @default.
- W2781654178 cites W2091160252 @default.
- W2781654178 cites W2091454231 @default.
- W2781654178 cites W2092440655 @default.
- W2781654178 cites W2130207796 @default.
- W2781654178 cites W2134376978 @default.
- W2781654178 cites W2165125801 @default.
- W2781654178 cites W2269616651 @default.
- W2781654178 cites W2284837756 @default.
- W2781654178 cites W2424128369 @default.
- W2781654178 cites W2463019654 @default.
- W2781654178 cites W2791332922 @default.
- W2781654178 cites W4230425569 @default.
- W2781654178 doi "https://doi.org/10.1016/j.geoderma.2017.12.036" @default.
- W2781654178 hasPublicationYear "2018" @default.
- W2781654178 type Work @default.
- W2781654178 sameAs 2781654178 @default.
- W2781654178 citedByCount "3" @default.
- W2781654178 countsByYear W27816541782019 @default.
- W2781654178 countsByYear W27816541782022 @default.
- W2781654178 countsByYear W27816541782023 @default.
- W2781654178 crossrefType "journal-article" @default.
- W2781654178 hasAuthorship W2781654178A5012160633 @default.
- W2781654178 hasAuthorship W2781654178A5027682068 @default.
- W2781654178 hasAuthorship W2781654178A5038175498 @default.
- W2781654178 hasAuthorship W2781654178A5043051967 @default.
- W2781654178 hasAuthorship W2781654178A5053675132 @default.
- W2781654178 hasAuthorship W2781654178A5082193418 @default.
- W2781654178 hasAuthorship W2781654178A5086392055 @default.
- W2781654178 hasAuthorship W2781654178A5089801645 @default.
- W2781654178 hasConcept C100970517 @default.
- W2781654178 hasConcept C105795698 @default.
- W2781654178 hasConcept C121332964 @default.
- W2781654178 hasConcept C126645576 @default.
- W2781654178 hasConcept C127313418 @default.
- W2781654178 hasConcept C187320778 @default.
- W2781654178 hasConcept C205649164 @default.
- W2781654178 hasConcept C2777016058 @default.
- W2781654178 hasConcept C2778334786 @default.
- W2781654178 hasConcept C33923547 @default.
- W2781654178 hasConcept C39432304 @default.
- W2781654178 hasConcept C44870925 @default.
- W2781654178 hasConcept C58640448 @default.
- W2781654178 hasConcept C62649853 @default.
- W2781654178 hasConcept C76886044 @default.