Matches in SemOpenAlex for { <https://semopenalex.org/work/W2781796199> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2781796199 abstract "This thesis attempts to model and forecast returns and realized volatility using two different methods: time series models that exploit the historical information set and options-based approach that provides a natural forecast of return variation from listed option prices. Both univariate and multivariate estimation of the time series models are considered in our analysis. Chapter 1: This chapter introduces a modified fractionally co-integrated vector autoregressive model, M-FCVAR, that caters for systems with I(0) and I(d) variables under the presence of long memory in the co-integrating residuals. Model inference of the FCVAR and M-FCVAR are compared using Monte Carlo simulations and an empirical application. The M-FCVAR is found to yield better in-sample fit and more precise model estimates. Higher return predictability is observed over long horizons using the M-FCVAR in the empirical example. In addition, the shocks associated with the I(0) variables could be permanent or transitory. We show that particular equation specifications are required to restrict these shocks when they produce only transitory effects on the I(d) variables. The simulation results show that the inappropriate treatment of the shock to the I(0) variable may negatively affect the precision in the estimation of the model parameters as well as the in-sample fit. Chapter 2: This chapter evaluates the performance of various measures of model-free option-implied volatility in predicting returns and realized volatility. The critical role of the out-of-the money call options is highlighted through an investigation of the relevance of different components of the model-free implied volatility. The Monte Carlo simulations show that: first, volatility forecasting performance of measures of implied volatility can be enhanced by employing an interpolation-extrapolation technique; second, for most measures considered, gains in their predictive power for future returns can be obtained by implementing an interpolation procedure. An empirical application using SPX options recorded from 2003 to 2013 further illustrates these claims. Chapter 3: This chapter compares the performance of various least absolute shrinkage and selection operator (Lasso) based models in forecasting future log realized variance (RV) constructed from high-frequency returns. We conduct a comprehensive empirical study using the SPY and 10 individual stocks selected from 10 different sectors. In an in-sample analysis, we provide evidence for the invalidity of the lag structure implied by the heterogeneous autoregressive (HAR) model which has been heavily adopted in volatility forecast. In our out-of-sample study considering the full time period, the best forecasting performance is usually provided by the Lasso-based model and the idea of forecast combination tends to improve the forecasting accuracy of the Lasso-based model. Among all models of interest, the ordered Lasso AR using the forecast combination serves as the top performer most frequently in forecasting RV and its improvements over the HAR model are, in most cases, significant over monthly horizons. Moreover, we observe a strong impact of the financial crisis on the performance of the Lasso-based models. Nevertheless, the ordered Lasso AR with the forecast combination still retains its advantages in the post-crisis period, especially over long horizons. In line with the existing study, the superiority of the Lasso-based models is more evident in a larger forecasting window size. The conclusions outlined above are not affected by the variation in the sampling frequency upon which the RV series are based. However, as the sampling frequency increases, there tends to be more situations where the Lasso-based model achieves the top performance in the full sample analysis." @default.
- W2781796199 created "2018-01-12" @default.
- W2781796199 creator A5001949720 @default.
- W2781796199 date "2017-01-01" @default.
- W2781796199 modified "2023-09-25" @default.
- W2781796199 title "Volatility and return forecasting:time series and options-based methods" @default.
- W2781796199 cites W1978867264 @default.
- W2781796199 cites W1979575715 @default.
- W2781796199 cites W1986528915 @default.
- W2781796199 cites W1999029409 @default.
- W2781796199 cites W2044117118 @default.
- W2781796199 cites W2051235503 @default.
- W2781796199 cites W2068138154 @default.
- W2781796199 cites W2070516830 @default.
- W2781796199 cites W2071017330 @default.
- W2781796199 cites W2110603299 @default.
- W2781796199 cites W2133855962 @default.
- W2781796199 cites W2135439816 @default.
- W2781796199 cites W2140585983 @default.
- W2781796199 cites W2153034546 @default.
- W2781796199 cites W2158595111 @default.
- W2781796199 cites W2158977591 @default.
- W2781796199 cites W2915749805 @default.
- W2781796199 cites W3121364726 @default.
- W2781796199 cites W3125156342 @default.
- W2781796199 cites W3126108094 @default.
- W2781796199 cites W3123699647 @default.
- W2781796199 doi "https://doi.org/10.17635/lancaster/thesis/196" @default.
- W2781796199 hasPublicationYear "2017" @default.
- W2781796199 type Work @default.
- W2781796199 sameAs 2781796199 @default.
- W2781796199 citedByCount "0" @default.
- W2781796199 crossrefType "dissertation" @default.
- W2781796199 hasAuthorship W2781796199A5001949720 @default.
- W2781796199 hasConcept C105795698 @default.
- W2781796199 hasConcept C149782125 @default.
- W2781796199 hasConcept C159877910 @default.
- W2781796199 hasConcept C161584116 @default.
- W2781796199 hasConcept C162324750 @default.
- W2781796199 hasConcept C19499675 @default.
- W2781796199 hasConcept C197640229 @default.
- W2781796199 hasConcept C199163554 @default.
- W2781796199 hasConcept C33923547 @default.
- W2781796199 hasConcept C41008148 @default.
- W2781796199 hasConcept C60092789 @default.
- W2781796199 hasConcept C85393063 @default.
- W2781796199 hasConcept C91602232 @default.
- W2781796199 hasConceptScore W2781796199C105795698 @default.
- W2781796199 hasConceptScore W2781796199C149782125 @default.
- W2781796199 hasConceptScore W2781796199C159877910 @default.
- W2781796199 hasConceptScore W2781796199C161584116 @default.
- W2781796199 hasConceptScore W2781796199C162324750 @default.
- W2781796199 hasConceptScore W2781796199C19499675 @default.
- W2781796199 hasConceptScore W2781796199C197640229 @default.
- W2781796199 hasConceptScore W2781796199C199163554 @default.
- W2781796199 hasConceptScore W2781796199C33923547 @default.
- W2781796199 hasConceptScore W2781796199C41008148 @default.
- W2781796199 hasConceptScore W2781796199C60092789 @default.
- W2781796199 hasConceptScore W2781796199C85393063 @default.
- W2781796199 hasConceptScore W2781796199C91602232 @default.
- W2781796199 hasLocation W27817961991 @default.
- W2781796199 hasOpenAccess W2781796199 @default.
- W2781796199 hasPrimaryLocation W27817961991 @default.
- W2781796199 hasRelatedWork W1511161229 @default.
- W2781796199 hasRelatedWork W1536108390 @default.
- W2781796199 hasRelatedWork W1550374864 @default.
- W2781796199 hasRelatedWork W1605555750 @default.
- W2781796199 hasRelatedWork W2206277215 @default.
- W2781796199 hasRelatedWork W2261865666 @default.
- W2781796199 hasRelatedWork W2395113707 @default.
- W2781796199 hasRelatedWork W2463818844 @default.
- W2781796199 hasRelatedWork W2491490048 @default.
- W2781796199 hasRelatedWork W2895013178 @default.
- W2781796199 hasRelatedWork W2932795522 @default.
- W2781796199 hasRelatedWork W3121637565 @default.
- W2781796199 hasRelatedWork W3122355853 @default.
- W2781796199 hasRelatedWork W3122799252 @default.
- W2781796199 hasRelatedWork W3123193156 @default.
- W2781796199 hasRelatedWork W3125635543 @default.
- W2781796199 hasRelatedWork W3171966623 @default.
- W2781796199 hasRelatedWork W3202110372 @default.
- W2781796199 hasRelatedWork W3212291315 @default.
- W2781796199 hasRelatedWork W61454338 @default.
- W2781796199 isParatext "false" @default.
- W2781796199 isRetracted "false" @default.
- W2781796199 magId "2781796199" @default.
- W2781796199 workType "dissertation" @default.