Matches in SemOpenAlex for { <https://semopenalex.org/work/W2781842383> ?p ?o ?g. }
Showing items 1 to 47 of
47
with 100 items per page.
- W2781842383 abstract "Nowadays, detection of limb movements from electroencephalogram (EEG) signals is crucial issue to focus on. Many studies on the movement detection of the limbs such as arm, leg, wrist limbs exist, while there are few studies regarding finger movements. Our study aims to determine the best classified finger pairs using binary classification with highest accuracy among individual finger movements. In this study, EEG an invasive record technique was used to record brain signals. In the visual stimulated based scenario, brain signals that occurred during individual finger movements were recorded. Muscle signals were also recorded simultaneously to capture EEG epoch the duration of the finger movements in the continuous EEG signal. Feature vectors were obtained with complexity, alpha band energy and beta band energy techniques and they were classified with support vector machine (SVM). Results from the four volunteers show thumb-little finger pair was determined as the best identified finger pair. Also, the most difficult identified finger pair was detected as the middle-ring finger pair." @default.
- W2781842383 created "2018-01-12" @default.
- W2781842383 creator A5017576348 @default.
- W2781842383 date "2017-10-01" @default.
- W2781842383 modified "2023-09-26" @default.
- W2781842383 title "Detection of the best classified finger pairs in finger movements using brain signals" @default.
- W2781842383 cites W1967288502 @default.
- W2781842383 cites W1988988635 @default.
- W2781842383 cites W1999389071 @default.
- W2781842383 cites W2010371409 @default.
- W2781842383 cites W2058272000 @default.
- W2781842383 cites W2089598398 @default.
- W2781842383 cites W2107952307 @default.
- W2781842383 doi "https://doi.org/10.1109/tiptekno.2017.8238130" @default.
- W2781842383 hasPublicationYear "2017" @default.
- W2781842383 type Work @default.
- W2781842383 sameAs 2781842383 @default.
- W2781842383 citedByCount "2" @default.
- W2781842383 countsByYear W27818423832019 @default.
- W2781842383 countsByYear W27818423832022 @default.
- W2781842383 crossrefType "proceedings-article" @default.
- W2781842383 hasAuthorship W2781842383A5017576348 @default.
- W2781842383 hasConcept C153180895 @default.
- W2781842383 hasConcept C154945302 @default.
- W2781842383 hasConcept C28490314 @default.
- W2781842383 hasConcept C41008148 @default.
- W2781842383 hasConceptScore W2781842383C153180895 @default.
- W2781842383 hasConceptScore W2781842383C154945302 @default.
- W2781842383 hasConceptScore W2781842383C28490314 @default.
- W2781842383 hasConceptScore W2781842383C41008148 @default.
- W2781842383 hasLocation W27818423831 @default.
- W2781842383 hasOpenAccess W2781842383 @default.
- W2781842383 hasPrimaryLocation W27818423831 @default.
- W2781842383 hasRelatedWork W1978450727 @default.
- W2781842383 hasRelatedWork W2033914206 @default.
- W2781842383 hasRelatedWork W2046077695 @default.
- W2781842383 hasRelatedWork W2146076056 @default.
- W2781842383 hasRelatedWork W2163371487 @default.
- W2781842383 hasRelatedWork W2163831990 @default.
- W2781842383 hasRelatedWork W2368779261 @default.
- W2781842383 hasRelatedWork W2378160586 @default.
- W2781842383 hasRelatedWork W2794438528 @default.
- W2781842383 hasRelatedWork W3003836766 @default.
- W2781842383 isParatext "false" @default.
- W2781842383 isRetracted "false" @default.
- W2781842383 magId "2781842383" @default.
- W2781842383 workType "article" @default.