Matches in SemOpenAlex for { <https://semopenalex.org/work/W2782034465> ?p ?o ?g. }
- W2782034465 endingPage "1238" @default.
- W2782034465 startingPage "1219" @default.
- W2782034465 abstract "Predictive analysis of complex computational models, such as uncertainty quantification (UQ), must often rely on using an existing database of simulation runs. In this paper we consider the task of performing low-multilinear-rank regression on such a database. Specifically we develop and analyze an efficient gradient computation that enables gradient-based optimization procedures, including stochastic gradient descent and quasi-Newton methods, for learning the parameters of a functional tensor-train (FT). We compare our algorithms with 22 other nonparametric and parametric regression methods on 10 real-world data sets and show that for many physical systems, exploiting low-rank structure facilitates efficient construction of surrogate models. We use a number of synthetic functions to build insight into behavior of our algorithms, including the rank adaptation and group-sparsity regularization procedures that we developed to reduce overfitting. Finally we conclude the paper by building a surrogate of a physical model of a propulsion plant on a naval vessel." @default.
- W2782034465 created "2018-01-12" @default.
- W2782034465 creator A5021570608 @default.
- W2782034465 creator A5084145417 @default.
- W2782034465 date "2018-12-01" @default.
- W2782034465 modified "2023-10-15" @default.
- W2782034465 title "Gradient-based optimization for regression in the functional tensor-train format" @default.
- W2782034465 cites W1858056047 @default.
- W2782034465 cites W1972020904 @default.
- W2782034465 cites W1974963628 @default.
- W2782034465 cites W1982421072 @default.
- W2782034465 cites W1993482030 @default.
- W2782034465 cites W2000215628 @default.
- W2782034465 cites W2001518794 @default.
- W2782034465 cites W2014617517 @default.
- W2782034465 cites W2018159038 @default.
- W2782034465 cites W2024165284 @default.
- W2782034465 cites W2035665246 @default.
- W2782034465 cites W2038198231 @default.
- W2782034465 cites W2045220410 @default.
- W2782034465 cites W2045355467 @default.
- W2782034465 cites W2051434435 @default.
- W2782034465 cites W2056558085 @default.
- W2782034465 cites W2070335948 @default.
- W2782034465 cites W2071729267 @default.
- W2782034465 cites W2088025933 @default.
- W2782034465 cites W2093994886 @default.
- W2782034465 cites W2110632054 @default.
- W2782034465 cites W2138019504 @default.
- W2782034465 cites W2158829028 @default.
- W2782034465 cites W2160791191 @default.
- W2782034465 cites W2168170318 @default.
- W2782034465 cites W2171630320 @default.
- W2782034465 cites W2962852715 @default.
- W2782034465 cites W2963116674 @default.
- W2782034465 cites W2963889731 @default.
- W2782034465 cites W2964029376 @default.
- W2782034465 cites W2964109560 @default.
- W2782034465 cites W3105645565 @default.
- W2782034465 cites W4231428347 @default.
- W2782034465 doi "https://doi.org/10.1016/j.jcp.2018.08.010" @default.
- W2782034465 hasPublicationYear "2018" @default.
- W2782034465 type Work @default.
- W2782034465 sameAs 2782034465 @default.
- W2782034465 citedByCount "20" @default.
- W2782034465 countsByYear W27820344652019 @default.
- W2782034465 countsByYear W27820344652020 @default.
- W2782034465 countsByYear W27820344652021 @default.
- W2782034465 countsByYear W27820344652022 @default.
- W2782034465 countsByYear W27820344652023 @default.
- W2782034465 crossrefType "journal-article" @default.
- W2782034465 hasAuthorship W2782034465A5021570608 @default.
- W2782034465 hasAuthorship W2782034465A5084145417 @default.
- W2782034465 hasBestOaLocation W27820344651 @default.
- W2782034465 hasConcept C102366305 @default.
- W2782034465 hasConcept C105795698 @default.
- W2782034465 hasConcept C11413529 @default.
- W2782034465 hasConcept C114614502 @default.
- W2782034465 hasConcept C117251300 @default.
- W2782034465 hasConcept C119857082 @default.
- W2782034465 hasConcept C126255220 @default.
- W2782034465 hasConcept C153258448 @default.
- W2782034465 hasConcept C154945302 @default.
- W2782034465 hasConcept C155281189 @default.
- W2782034465 hasConcept C164226766 @default.
- W2782034465 hasConcept C202444582 @default.
- W2782034465 hasConcept C206688291 @default.
- W2782034465 hasConcept C22019652 @default.
- W2782034465 hasConcept C2776135515 @default.
- W2782034465 hasConcept C2778770139 @default.
- W2782034465 hasConcept C32230216 @default.
- W2782034465 hasConcept C33923547 @default.
- W2782034465 hasConcept C41008148 @default.
- W2782034465 hasConcept C50644808 @default.
- W2782034465 hasConcept C83546350 @default.
- W2782034465 hasConcept C84392682 @default.
- W2782034465 hasConceptScore W2782034465C102366305 @default.
- W2782034465 hasConceptScore W2782034465C105795698 @default.
- W2782034465 hasConceptScore W2782034465C11413529 @default.
- W2782034465 hasConceptScore W2782034465C114614502 @default.
- W2782034465 hasConceptScore W2782034465C117251300 @default.
- W2782034465 hasConceptScore W2782034465C119857082 @default.
- W2782034465 hasConceptScore W2782034465C126255220 @default.
- W2782034465 hasConceptScore W2782034465C153258448 @default.
- W2782034465 hasConceptScore W2782034465C154945302 @default.
- W2782034465 hasConceptScore W2782034465C155281189 @default.
- W2782034465 hasConceptScore W2782034465C164226766 @default.
- W2782034465 hasConceptScore W2782034465C202444582 @default.
- W2782034465 hasConceptScore W2782034465C206688291 @default.
- W2782034465 hasConceptScore W2782034465C22019652 @default.
- W2782034465 hasConceptScore W2782034465C2776135515 @default.
- W2782034465 hasConceptScore W2782034465C2778770139 @default.
- W2782034465 hasConceptScore W2782034465C32230216 @default.
- W2782034465 hasConceptScore W2782034465C33923547 @default.
- W2782034465 hasConceptScore W2782034465C41008148 @default.
- W2782034465 hasConceptScore W2782034465C50644808 @default.
- W2782034465 hasConceptScore W2782034465C83546350 @default.
- W2782034465 hasConceptScore W2782034465C84392682 @default.