Matches in SemOpenAlex for { <https://semopenalex.org/work/W2782342615> ?p ?o ?g. }
- W2782342615 endingPage "2814" @default.
- W2782342615 startingPage "2801" @default.
- W2782342615 abstract "The stress-induced unfolded protein response (UPR) in the endoplasmic reticulum (ER) involves various signaling cross-talks and controls cell fate. B-cell receptor (BCR) signaling, which can trigger UPR, induces gammaherpesvirus lytic replication and serves as a physiological mechanism for gammaherpesvirus reactivation in vivo. However, how the UPR regulates BCR-mediated gammaherpesvirus infection is unknown. Here, we demonstrate that the ER stressors tunicamycin and thapsigargin inhibit BCR-mediated murine gammaherpesvirus 68 (MHV68) lytic replication by inducing expression of the UPR mediator Bip and blocking activation of Akt, ERK, and JNK. Both Bip and the downstream transcription factor ATF4 inhibited BCR-mediated MHV68 lytic gene expression, whereas UPR-induced C/EBP homologous protein (CHOP) was required for and promoted BCR-mediated MHV68 lytic replication by suppressing upstream Bip and ATF4 expression. Bip knockout was sufficient to rescue BCR-mediated MHV68 lytic gene expression in CHOP knockout cells, and this rescue was blocked by ectopic ATF4 expression. Furthermore, ATF4 directly inhibited promoter activity of the MHV68 lytic switch transactivator RTA. Altogether, we show that ER stress–induced CHOP inhibits Bip and ATF4 expression and that ATF4, in turn, plays a critical role in CHOP-mediated regulation of BCR-controlled MHV68 lytic replication. We conclude that ER stress–mediated UPR and BCR signaling pathways are interconnected and form a complex network to regulate the gammaherpesvirus infection cycle. The stress-induced unfolded protein response (UPR) in the endoplasmic reticulum (ER) involves various signaling cross-talks and controls cell fate. B-cell receptor (BCR) signaling, which can trigger UPR, induces gammaherpesvirus lytic replication and serves as a physiological mechanism for gammaherpesvirus reactivation in vivo. However, how the UPR regulates BCR-mediated gammaherpesvirus infection is unknown. Here, we demonstrate that the ER stressors tunicamycin and thapsigargin inhibit BCR-mediated murine gammaherpesvirus 68 (MHV68) lytic replication by inducing expression of the UPR mediator Bip and blocking activation of Akt, ERK, and JNK. Both Bip and the downstream transcription factor ATF4 inhibited BCR-mediated MHV68 lytic gene expression, whereas UPR-induced C/EBP homologous protein (CHOP) was required for and promoted BCR-mediated MHV68 lytic replication by suppressing upstream Bip and ATF4 expression. Bip knockout was sufficient to rescue BCR-mediated MHV68 lytic gene expression in CHOP knockout cells, and this rescue was blocked by ectopic ATF4 expression. Furthermore, ATF4 directly inhibited promoter activity of the MHV68 lytic switch transactivator RTA. Altogether, we show that ER stress–induced CHOP inhibits Bip and ATF4 expression and that ATF4, in turn, plays a critical role in CHOP-mediated regulation of BCR-controlled MHV68 lytic replication. We conclude that ER stress–mediated UPR and BCR signaling pathways are interconnected and form a complex network to regulate the gammaherpesvirus infection cycle." @default.
- W2782342615 created "2018-01-12" @default.
- W2782342615 creator A5002076661 @default.
- W2782342615 creator A5013968793 @default.
- W2782342615 creator A5020707285 @default.
- W2782342615 creator A5061620026 @default.
- W2782342615 creator A5072351864 @default.
- W2782342615 creator A5084740331 @default.
- W2782342615 date "2018-02-01" @default.
- W2782342615 modified "2023-09-29" @default.
- W2782342615 title "Regulation of gammaherpesvirus lytic replication by endoplasmic reticulum stress–induced transcription factors ATF4 and CHOP" @default.
- W2782342615 cites W1480946340 @default.
- W2782342615 cites W1548623075 @default.
- W2782342615 cites W1585441912 @default.
- W2782342615 cites W1838401124 @default.
- W2782342615 cites W1975682198 @default.
- W2782342615 cites W1981785841 @default.
- W2782342615 cites W1986045624 @default.
- W2782342615 cites W2000584697 @default.
- W2782342615 cites W2003949540 @default.
- W2782342615 cites W2007313599 @default.
- W2782342615 cites W2010586398 @default.
- W2782342615 cites W2015616819 @default.
- W2782342615 cites W2019728262 @default.
- W2782342615 cites W2039131228 @default.
- W2782342615 cites W2039627762 @default.
- W2782342615 cites W2042113670 @default.
- W2782342615 cites W2042996046 @default.
- W2782342615 cites W2057900906 @default.
- W2782342615 cites W2058268968 @default.
- W2782342615 cites W2058972859 @default.
- W2782342615 cites W2061112273 @default.
- W2782342615 cites W2061876807 @default.
- W2782342615 cites W2062804078 @default.
- W2782342615 cites W2062918974 @default.
- W2782342615 cites W2063535351 @default.
- W2782342615 cites W2066610233 @default.
- W2782342615 cites W2067257663 @default.
- W2782342615 cites W2068133291 @default.
- W2782342615 cites W2075084453 @default.
- W2782342615 cites W2077416276 @default.
- W2782342615 cites W2078057624 @default.
- W2782342615 cites W2080901528 @default.
- W2782342615 cites W2081903525 @default.
- W2782342615 cites W2081920416 @default.
- W2782342615 cites W2082073404 @default.
- W2782342615 cites W2088103993 @default.
- W2782342615 cites W2094144752 @default.
- W2782342615 cites W2105859872 @default.
- W2782342615 cites W2113254662 @default.
- W2782342615 cites W2115137627 @default.
- W2782342615 cites W2122212319 @default.
- W2782342615 cites W2125723193 @default.
- W2782342615 cites W2133284141 @default.
- W2782342615 cites W2134971124 @default.
- W2782342615 cites W2140671259 @default.
- W2782342615 cites W2152717052 @default.
- W2782342615 cites W2154579808 @default.
- W2782342615 cites W2161060413 @default.
- W2782342615 cites W2162695817 @default.
- W2782342615 cites W2162797237 @default.
- W2782342615 cites W2169462373 @default.
- W2782342615 cites W2515518895 @default.
- W2782342615 doi "https://doi.org/10.1074/jbc.m117.813675" @default.
- W2782342615 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5827435" @default.
- W2782342615 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29305424" @default.
- W2782342615 hasPublicationYear "2018" @default.
- W2782342615 type Work @default.
- W2782342615 sameAs 2782342615 @default.
- W2782342615 citedByCount "12" @default.
- W2782342615 countsByYear W27823426152018 @default.
- W2782342615 countsByYear W27823426152019 @default.
- W2782342615 countsByYear W27823426152020 @default.
- W2782342615 countsByYear W27823426152021 @default.
- W2782342615 countsByYear W27823426152023 @default.
- W2782342615 crossrefType "journal-article" @default.
- W2782342615 hasAuthorship W2782342615A5002076661 @default.
- W2782342615 hasAuthorship W2782342615A5013968793 @default.
- W2782342615 hasAuthorship W2782342615A5020707285 @default.
- W2782342615 hasAuthorship W2782342615A5061620026 @default.
- W2782342615 hasAuthorship W2782342615A5072351864 @default.
- W2782342615 hasAuthorship W2782342615A5084740331 @default.
- W2782342615 hasBestOaLocation W27823426151 @default.
- W2782342615 hasConcept C104317684 @default.
- W2782342615 hasConcept C1292079 @default.
- W2782342615 hasConcept C139447449 @default.
- W2782342615 hasConcept C158617107 @default.
- W2782342615 hasConcept C182615771 @default.
- W2782342615 hasConcept C203014093 @default.
- W2782342615 hasConcept C2522874641 @default.
- W2782342615 hasConcept C2780900454 @default.
- W2782342615 hasConcept C54355233 @default.
- W2782342615 hasConcept C62478195 @default.
- W2782342615 hasConcept C86339819 @default.
- W2782342615 hasConcept C86803240 @default.
- W2782342615 hasConcept C95444343 @default.
- W2782342615 hasConceptScore W2782342615C104317684 @default.
- W2782342615 hasConceptScore W2782342615C1292079 @default.