Matches in SemOpenAlex for { <https://semopenalex.org/work/W2782483668> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2782483668 endingPage "486" @default.
- W2782483668 startingPage "474" @default.
- W2782483668 abstract "Purpose As a foundational issue of social mining, sentiment classification suffered from a lack of unlabeled data. To enhance accuracy of classification with few labeled data, many semi-supervised algorithms had been proposed. These algorithms improved the classification performance when the labeled data are insufficient. However, precision and efficiency are difficult to be ensured at the same time in many semi-supervised methods. This paper aims to present a novel method for using unlabeled data in a more accurate and more efficient way. Design/methodology/approach First, the authors designed a boosting-based method for unlabeled data selection. The improved boosting-based method can choose unlabeled data which have the same distribution with the labeled data. The authors then proposed a novel strategy which can combine weak classifiers into strong classifiers that are more rational. Finally, a semi-supervised sentiment classification algorithm is given. Findings Experimental results demonstrate that the novel algorithm can achieve really high accuracy with low time consumption. It is helpful for achieving high-performance social network-related applications. Research limitations/implications The novel method needs a small labeled data set for semi-supervised learning. Maybe someday the authors can improve it to an unsupervised method. Practical implications The mentioned method can be used in text mining, image classification, audio processing and so on, and also in an unstructured data mining-related field. Overcome the problem of insufficient labeled data and achieve high precision using fewer computational time. Social implications Sentiment mining has wide applications in public opinion management, public security, market analysis, social network and related fields. Sentiment classification is the basis of sentiment mining. Originality/value According to what the authors have been informed, it is the first time transfer learning be introduced to AdaBoost for semi-supervised learning. Moreover, the improved AdaBoost uses a totally new mechanism for weighting." @default.
- W2782483668 created "2018-01-12" @default.
- W2782483668 creator A5000670217 @default.
- W2782483668 creator A5046782534 @default.
- W2782483668 creator A5062780812 @default.
- W2782483668 date "2018-01-03" @default.
- W2782483668 modified "2023-10-17" @default.
- W2782483668 title "Take full advantage of unlabeled data for sentiment classification" @default.
- W2782483668 cites W1977255134 @default.
- W2782483668 cites W2001289057 @default.
- W2782483668 cites W2019288156 @default.
- W2782483668 cites W2022623999 @default.
- W2782483668 cites W2075659194 @default.
- W2782483668 cites W2100664256 @default.
- W2782483668 cites W2114475835 @default.
- W2782483668 doi "https://doi.org/10.1108/k-08-2016-0196" @default.
- W2782483668 hasPublicationYear "2018" @default.
- W2782483668 type Work @default.
- W2782483668 sameAs 2782483668 @default.
- W2782483668 citedByCount "1" @default.
- W2782483668 countsByYear W27824836682018 @default.
- W2782483668 crossrefType "journal-article" @default.
- W2782483668 hasAuthorship W2782483668A5000670217 @default.
- W2782483668 hasAuthorship W2782483668A5046782534 @default.
- W2782483668 hasAuthorship W2782483668A5062780812 @default.
- W2782483668 hasConcept C119857082 @default.
- W2782483668 hasConcept C124101348 @default.
- W2782483668 hasConcept C136389625 @default.
- W2782483668 hasConcept C154945302 @default.
- W2782483668 hasConcept C202444582 @default.
- W2782483668 hasConcept C2776145971 @default.
- W2782483668 hasConcept C33923547 @default.
- W2782483668 hasConcept C41008148 @default.
- W2782483668 hasConcept C46686674 @default.
- W2782483668 hasConcept C50644808 @default.
- W2782483668 hasConcept C58973888 @default.
- W2782483668 hasConcept C66402592 @default.
- W2782483668 hasConcept C9652623 @default.
- W2782483668 hasConceptScore W2782483668C119857082 @default.
- W2782483668 hasConceptScore W2782483668C124101348 @default.
- W2782483668 hasConceptScore W2782483668C136389625 @default.
- W2782483668 hasConceptScore W2782483668C154945302 @default.
- W2782483668 hasConceptScore W2782483668C202444582 @default.
- W2782483668 hasConceptScore W2782483668C2776145971 @default.
- W2782483668 hasConceptScore W2782483668C33923547 @default.
- W2782483668 hasConceptScore W2782483668C41008148 @default.
- W2782483668 hasConceptScore W2782483668C46686674 @default.
- W2782483668 hasConceptScore W2782483668C50644808 @default.
- W2782483668 hasConceptScore W2782483668C58973888 @default.
- W2782483668 hasConceptScore W2782483668C66402592 @default.
- W2782483668 hasConceptScore W2782483668C9652623 @default.
- W2782483668 hasIssue "3" @default.
- W2782483668 hasLocation W27824836681 @default.
- W2782483668 hasOpenAccess W2782483668 @default.
- W2782483668 hasPrimaryLocation W27824836681 @default.
- W2782483668 hasRelatedWork W171415620 @default.
- W2782483668 hasRelatedWork W2012844989 @default.
- W2782483668 hasRelatedWork W2130844314 @default.
- W2782483668 hasRelatedWork W2145376937 @default.
- W2782483668 hasRelatedWork W2553312496 @default.
- W2782483668 hasRelatedWork W2752124967 @default.
- W2782483668 hasRelatedWork W2939325949 @default.
- W2782483668 hasRelatedWork W3208365968 @default.
- W2782483668 hasRelatedWork W3216395362 @default.
- W2782483668 hasRelatedWork W986840995 @default.
- W2782483668 hasVolume "47" @default.
- W2782483668 isParatext "false" @default.
- W2782483668 isRetracted "false" @default.
- W2782483668 magId "2782483668" @default.
- W2782483668 workType "article" @default.