Matches in SemOpenAlex for { <https://semopenalex.org/work/W2782812818> ?p ?o ?g. }
- W2782812818 endingPage "60" @default.
- W2782812818 startingPage "52" @default.
- W2782812818 abstract "Radiocesium (RCs) is selectively adsorbed on interlayer sites of weathered micaceous minerals, which primarily controls the mobility of RCs in the soil environment. Pedogenesis under acidic condition (under wetter climate regime) implies that RCs adsorption sites may be covered with soil organic matter (OM) and/or intercalated with hydroxy-Al polymer (Al(OH)x). While these interactions well-known control RCs adsorption, the relative importance of the two processes is virtually unstudied in field environment. We hypothesized that Al(OH)x intercalation plays dominant role in the adsorption inhibition in both surface and subsurface soils because Al(OH)x has more direct effect on RCs access to frayed edge site (FES), the sites intermediate between an expansible and non-expansible interlayers. Soils from two forest soil profiles under temperate and tropical climate (Ono, Japan and Kinabalu, Malaysia) were sampled every 3 cm from 0 to 30 cm and sieved to isolate soil particles of ≤ 20 μm diameters for the analysis of radiocesium interception potential (RIP) after a series of pretreatment. One subset was treated with H2O2 to remove OM. Another subset was further treated with hot sodium citrate to remove Al(OH)x after the H2O2 treatment. The changes in specific surface area (SSA) by the N2-BET method before and after the OM removal were determined to assess OM coverage on soil mineral surfaces. The contributions of OM removal to the total increase in RIP were surprisingly high (74.5–93.8%) in the uppermost soil layers (0–3 cm), implying that (i) OM reduced the access of RCs to FES, and (ii) OM binding with Al (organo‑aluminum complexation) reduced Al(OH)x formation in the interlayers. Towards deeper layers, OM contribution progressively declined to 2.4–13.9% whereas the Al(OH)x effect increased up to 86.1–97.6% in both profiles. The highest OM coverage on mineral surface (83.7%) was observed in the uppermost soil layer of Ono series. The stepwise OM removal of this sample by a weaker oxidizing reagent (NaOCl) for 6, 12, 24, and 30 h led to a gradual decline in OC content from 145 g kg− 1 to 67.2 g kg− 1. The OC losses were accompanied by a slight but progressive liberation in SSA from 8.3 to 12.2 m2 kg− 1, indicating that a portion of the soil mineral surfaces became exposed. However, RIP did not largely increase after the NaOCl treatment up to 30 h but remained quite low relative to the RIP value after the more complete OM removal by H2O2. These results indicate that the fraction of OM relatively resistant to chemical oxidation (presumably strongly bound to reactive portions of mineral surface) appeared to contribute to the inhibition of RCs adsorption on 2:1 interlayer sites. In conclusion, the ability of weathered micaceous minerals to retain RCs was largely reduced by two different mechanisms: OM coverage on the mineral surface (esp. at surface) and Al(OH)x interlayering (esp. at subsurface soil layers). Our results imply that long-term RCs dynamics may be strongly controlled by soil carbon level and thus ecosystem carbon balance (e.g., forest and grassland vs. bare and cropland) as well as the abundance and/or weathering degree of micaceous minerals." @default.
- W2782812818 created "2018-01-26" @default.
- W2782812818 creator A5000791286 @default.
- W2782812818 creator A5038863863 @default.
- W2782812818 creator A5049556660 @default.
- W2782812818 creator A5058956072 @default.
- W2782812818 creator A5072198707 @default.
- W2782812818 date "2018-06-01" @default.
- W2782812818 modified "2023-10-18" @default.
- W2782812818 title "Inhibition of radiocesium adsorption on 2:1 clay minerals under acidic soil environment: Effect of organic matter vs. hydroxy aluminum polymer" @default.
- W2782812818 cites W1271126175 @default.
- W2782812818 cites W1963489966 @default.
- W2782812818 cites W1967524716 @default.
- W2782812818 cites W1973658913 @default.
- W2782812818 cites W1985324600 @default.
- W2782812818 cites W1985450515 @default.
- W2782812818 cites W1994008004 @default.
- W2782812818 cites W1998675257 @default.
- W2782812818 cites W2016441857 @default.
- W2782812818 cites W2018295861 @default.
- W2782812818 cites W2018943037 @default.
- W2782812818 cites W2021182782 @default.
- W2782812818 cites W2026469375 @default.
- W2782812818 cites W2029315667 @default.
- W2782812818 cites W2036014498 @default.
- W2782812818 cites W2038544121 @default.
- W2782812818 cites W2040670684 @default.
- W2782812818 cites W2040900317 @default.
- W2782812818 cites W2041801215 @default.
- W2782812818 cites W2045034534 @default.
- W2782812818 cites W2052288752 @default.
- W2782812818 cites W2063236585 @default.
- W2782812818 cites W2064352180 @default.
- W2782812818 cites W2067787947 @default.
- W2782812818 cites W2070412097 @default.
- W2782812818 cites W2073711518 @default.
- W2782812818 cites W2081107586 @default.
- W2782812818 cites W2083289775 @default.
- W2782812818 cites W2083324464 @default.
- W2782812818 cites W2084803757 @default.
- W2782812818 cites W2093619349 @default.
- W2782812818 cites W2111919083 @default.
- W2782812818 cites W2112203794 @default.
- W2782812818 cites W2117350830 @default.
- W2782812818 cites W2135949144 @default.
- W2782812818 cites W2138079276 @default.
- W2782812818 cites W2162256264 @default.
- W2782812818 cites W2294152972 @default.
- W2782812818 cites W2315457106 @default.
- W2782812818 cites W2333838282 @default.
- W2782812818 cites W2438511942 @default.
- W2782812818 cites W2581405828 @default.
- W2782812818 cites W2589352358 @default.
- W2782812818 cites W3009397686 @default.
- W2782812818 doi "https://doi.org/10.1016/j.geoderma.2017.12.039" @default.
- W2782812818 hasPublicationYear "2018" @default.
- W2782812818 type Work @default.
- W2782812818 sameAs 2782812818 @default.
- W2782812818 citedByCount "25" @default.
- W2782812818 countsByYear W27828128182018 @default.
- W2782812818 countsByYear W27828128182019 @default.
- W2782812818 countsByYear W27828128182020 @default.
- W2782812818 countsByYear W27828128182021 @default.
- W2782812818 countsByYear W27828128182022 @default.
- W2782812818 countsByYear W27828128182023 @default.
- W2782812818 crossrefType "journal-article" @default.
- W2782812818 hasAuthorship W2782812818A5000791286 @default.
- W2782812818 hasAuthorship W2782812818A5038863863 @default.
- W2782812818 hasAuthorship W2782812818A5049556660 @default.
- W2782812818 hasAuthorship W2782812818A5058956072 @default.
- W2782812818 hasAuthorship W2782812818A5072198707 @default.
- W2782812818 hasConcept C107872376 @default.
- W2782812818 hasConcept C150394285 @default.
- W2782812818 hasConcept C156634047 @default.
- W2782812818 hasConcept C159390177 @default.
- W2782812818 hasConcept C159750122 @default.
- W2782812818 hasConcept C178790620 @default.
- W2782812818 hasConcept C182124840 @default.
- W2782812818 hasConcept C184269829 @default.
- W2782812818 hasConcept C185592680 @default.
- W2782812818 hasConcept C18903297 @default.
- W2782812818 hasConcept C198072978 @default.
- W2782812818 hasConcept C199289684 @default.
- W2782812818 hasConcept C39432304 @default.
- W2782812818 hasConcept C40212044 @default.
- W2782812818 hasConcept C48743137 @default.
- W2782812818 hasConcept C81461190 @default.
- W2782812818 hasConcept C86803240 @default.
- W2782812818 hasConceptScore W2782812818C107872376 @default.
- W2782812818 hasConceptScore W2782812818C150394285 @default.
- W2782812818 hasConceptScore W2782812818C156634047 @default.
- W2782812818 hasConceptScore W2782812818C159390177 @default.
- W2782812818 hasConceptScore W2782812818C159750122 @default.
- W2782812818 hasConceptScore W2782812818C178790620 @default.
- W2782812818 hasConceptScore W2782812818C182124840 @default.
- W2782812818 hasConceptScore W2782812818C184269829 @default.
- W2782812818 hasConceptScore W2782812818C185592680 @default.
- W2782812818 hasConceptScore W2782812818C18903297 @default.