Matches in SemOpenAlex for { <https://semopenalex.org/work/W2782829842> ?p ?o ?g. }
Showing items 1 to 52 of
52
with 100 items per page.
- W2782829842 abstract "The paper focuses on solving boundary problems for elliptic equation in domains with conical or corner singular points. The solution is constructed in the special function spaces which have derivatives that sum with some weights. These function spaces catch the main feature of the solution to such problems: it is everywhere smooth, except for conical points. Generally speaking, these derivatives have power singularities when approaching the conical point. Study of the conical point range is the main objective when solving the boundary problem. To solve the problem the method proposed by V. A. Kondratiev [1] has been used. The proposed approach can be used to solve various diffraction problems. For example, it is suitable to study masking problems that require thorough analysis of the singular points of masking shells, which arise after application of certain coordinate transformations [2]." @default.
- W2782829842 created "2018-01-26" @default.
- W2782829842 creator A5061104859 @default.
- W2782829842 creator A5073605890 @default.
- W2782829842 date "2017-05-01" @default.
- W2782829842 modified "2023-09-24" @default.
- W2782829842 title "Solution of boundary problems for elliptic equation in domains with conical or corner points" @default.
- W2782829842 cites W2093894240 @default.
- W2782829842 doi "https://doi.org/10.1109/piers.2017.8262097" @default.
- W2782829842 hasPublicationYear "2017" @default.
- W2782829842 type Work @default.
- W2782829842 sameAs 2782829842 @default.
- W2782829842 citedByCount "4" @default.
- W2782829842 countsByYear W27828298422021 @default.
- W2782829842 countsByYear W27828298422022 @default.
- W2782829842 countsByYear W27828298422023 @default.
- W2782829842 crossrefType "proceedings-article" @default.
- W2782829842 hasAuthorship W2782829842A5061104859 @default.
- W2782829842 hasAuthorship W2782829842A5073605890 @default.
- W2782829842 hasConcept C124961601 @default.
- W2782829842 hasConcept C134306372 @default.
- W2782829842 hasConcept C179603306 @default.
- W2782829842 hasConcept C182310444 @default.
- W2782829842 hasConcept C2524010 @default.
- W2782829842 hasConcept C33923547 @default.
- W2782829842 hasConcept C41008148 @default.
- W2782829842 hasConcept C62354387 @default.
- W2782829842 hasConceptScore W2782829842C124961601 @default.
- W2782829842 hasConceptScore W2782829842C134306372 @default.
- W2782829842 hasConceptScore W2782829842C179603306 @default.
- W2782829842 hasConceptScore W2782829842C182310444 @default.
- W2782829842 hasConceptScore W2782829842C2524010 @default.
- W2782829842 hasConceptScore W2782829842C33923547 @default.
- W2782829842 hasConceptScore W2782829842C41008148 @default.
- W2782829842 hasConceptScore W2782829842C62354387 @default.
- W2782829842 hasLocation W27828298421 @default.
- W2782829842 hasOpenAccess W2782829842 @default.
- W2782829842 hasPrimaryLocation W27828298421 @default.
- W2782829842 hasRelatedWork W1977673410 @default.
- W2782829842 hasRelatedWork W2008734041 @default.
- W2782829842 hasRelatedWork W2047672901 @default.
- W2782829842 hasRelatedWork W2060869480 @default.
- W2782829842 hasRelatedWork W2100405323 @default.
- W2782829842 hasRelatedWork W2164596632 @default.
- W2782829842 hasRelatedWork W2893842648 @default.
- W2782829842 hasRelatedWork W2949204615 @default.
- W2782829842 hasRelatedWork W2954302307 @default.
- W2782829842 hasRelatedWork W3182718873 @default.
- W2782829842 isParatext "false" @default.
- W2782829842 isRetracted "false" @default.
- W2782829842 magId "2782829842" @default.
- W2782829842 workType "article" @default.