Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783003656> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2783003656 abstract "Approximate pattern matching (APM) has been widely used in big data applications, e.g., genome data analysis, speech recognition, fraud detection, computer vision, etc. Although an automata-based approach is an efficient way to realize APM, the inherent sequentiality of automata deters its implementation on general-purpose parallel platforms, e.g., multicore CPUs and many-core GPUs. Recently, however, Micron has proposed its Automata Processor (AP), a processing-in-memory (PIM) architecture dedicated for non-deterministic automata (NFA) simulation. It has nominally achieved thousands-fold speedup over a multicore CPU for many big data applications. Alas, the AP ecosystem suffers from two major problems. First, the current APIs of AP require manual manipulations of all computational elements. Second, multiple rounds of time-consuming compilation are needed for large datasets. Both problems hinder programmer productivity and end-to-end performance. Therefore, we propose a paradigm-based approach to hierarchically generate automata on AP and use this approach to create Robotomata, a framework for APM on AP. By taking in the following inputs — the types of APM paradigms, desired pattern length, and allowed number of errors as input — our framework can generate the optimized APM-automata codes on AP, so as to improve programmer productivity. The generated codes can also maximize the reuse of pre-compiled macros and significantly reduce the time for reconfiguration. We evaluate Robotomata by comparing it to two state-of-the-art APM implementations on AP with real-world datasets. Our experimental results show that our generated codes can achieve up to 30.5x and 12.8x speedup with respect to configuration while maintaining the computational performance. Compared to the counterparts on CPU, our codes achieve up to 393x overall speedup, even when including the reconfiguration costs. We highlight the importance of counting the configuration time towards the overall performance on AP, which would provide better insight in identifying essential hardware features, specifically for large-scale problem sizes." @default.
- W2783003656 created "2018-01-26" @default.
- W2783003656 creator A5047871879 @default.
- W2783003656 creator A5052001478 @default.
- W2783003656 creator A5058539554 @default.
- W2783003656 creator A5080102032 @default.
- W2783003656 date "2017-12-01" @default.
- W2783003656 modified "2023-10-06" @default.
- W2783003656 title "Robotomata: A framework for approximate pattern matching of big data on an automata processor" @default.
- W2783003656 cites W193807271 @default.
- W2783003656 cites W1980938256 @default.
- W2783003656 cites W1995917424 @default.
- W2783003656 cites W1996693511 @default.
- W2783003656 cites W2001496424 @default.
- W2783003656 cites W2014214820 @default.
- W2783003656 cites W2039417226 @default.
- W2783003656 cites W2044242345 @default.
- W2783003656 cites W2062949766 @default.
- W2783003656 cites W2076238443 @default.
- W2783003656 cites W2104262506 @default.
- W2783003656 cites W2119423764 @default.
- W2783003656 cites W2132774949 @default.
- W2783003656 cites W2147025186 @default.
- W2783003656 cites W2416036494 @default.
- W2783003656 cites W2422616509 @default.
- W2783003656 cites W2477094402 @default.
- W2783003656 cites W2478089729 @default.
- W2783003656 cites W2480699195 @default.
- W2783003656 cites W2496668040 @default.
- W2783003656 cites W2507706987 @default.
- W2783003656 cites W2529090470 @default.
- W2783003656 cites W2551468928 @default.
- W2783003656 cites W2584402701 @default.
- W2783003656 cites W2617288171 @default.
- W2783003656 cites W2619891821 @default.
- W2783003656 cites W2620106252 @default.
- W2783003656 cites W2621889996 @default.
- W2783003656 cites W2623016866 @default.
- W2783003656 cites W2725390418 @default.
- W2783003656 cites W2733653163 @default.
- W2783003656 cites W2794757234 @default.
- W2783003656 doi "https://doi.org/10.1109/bigdata.2017.8257936" @default.
- W2783003656 hasPublicationYear "2017" @default.
- W2783003656 type Work @default.
- W2783003656 sameAs 2783003656 @default.
- W2783003656 citedByCount "7" @default.
- W2783003656 countsByYear W27830036562018 @default.
- W2783003656 countsByYear W27830036562019 @default.
- W2783003656 countsByYear W27830036562020 @default.
- W2783003656 countsByYear W27830036562021 @default.
- W2783003656 crossrefType "proceedings-article" @default.
- W2783003656 hasAuthorship W2783003656A5047871879 @default.
- W2783003656 hasAuthorship W2783003656A5052001478 @default.
- W2783003656 hasAuthorship W2783003656A5058539554 @default.
- W2783003656 hasAuthorship W2783003656A5080102032 @default.
- W2783003656 hasConcept C105795698 @default.
- W2783003656 hasConcept C112505250 @default.
- W2783003656 hasConcept C124101348 @default.
- W2783003656 hasConcept C165064840 @default.
- W2783003656 hasConcept C173608175 @default.
- W2783003656 hasConcept C199360897 @default.
- W2783003656 hasConcept C33923547 @default.
- W2783003656 hasConcept C41008148 @default.
- W2783003656 hasConcept C68859911 @default.
- W2783003656 hasConcept C75684735 @default.
- W2783003656 hasConcept C80444323 @default.
- W2783003656 hasConceptScore W2783003656C105795698 @default.
- W2783003656 hasConceptScore W2783003656C112505250 @default.
- W2783003656 hasConceptScore W2783003656C124101348 @default.
- W2783003656 hasConceptScore W2783003656C165064840 @default.
- W2783003656 hasConceptScore W2783003656C173608175 @default.
- W2783003656 hasConceptScore W2783003656C199360897 @default.
- W2783003656 hasConceptScore W2783003656C33923547 @default.
- W2783003656 hasConceptScore W2783003656C41008148 @default.
- W2783003656 hasConceptScore W2783003656C68859911 @default.
- W2783003656 hasConceptScore W2783003656C75684735 @default.
- W2783003656 hasConceptScore W2783003656C80444323 @default.
- W2783003656 hasLocation W27830036561 @default.
- W2783003656 hasOpenAccess W2783003656 @default.
- W2783003656 hasPrimaryLocation W27830036561 @default.
- W2783003656 hasRelatedWork W1489458962 @default.
- W2783003656 hasRelatedWork W1513430197 @default.
- W2783003656 hasRelatedWork W1580001272 @default.
- W2783003656 hasRelatedWork W2069811640 @default.
- W2783003656 hasRelatedWork W2359597723 @default.
- W2783003656 hasRelatedWork W2387636447 @default.
- W2783003656 hasRelatedWork W2387805876 @default.
- W2783003656 hasRelatedWork W2952363982 @default.
- W2783003656 hasRelatedWork W3106225727 @default.
- W2783003656 hasRelatedWork W2604027913 @default.
- W2783003656 isParatext "false" @default.
- W2783003656 isRetracted "false" @default.
- W2783003656 magId "2783003656" @default.
- W2783003656 workType "article" @default.