Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783006442> ?p ?o ?g. }
- W2783006442 endingPage "455" @default.
- W2783006442 startingPage "419" @default.
- W2783006442 abstract "This note is meant to introduce the reader to a duality principle for nonlinear equations recently discovered in Valtorta (Reverse Khas’minskii condition. Math Z 270(1):65–177, 2011), Mari and Valtorta (Trans Am Math Soc 365(9):4699–4727, 2013), and Mari and Pessoa (Commun Anal Geom, to appear). Motivations come from the desire to give a unifying potential-theoretic framework for various maximum principles at infinity appearing in the literature (Ekeland, Omori-Yau, Pigola-Rigoli-Setti), as well as to describe their interplay with properties coming from stochastic analysis on manifolds. The duality involves an appropriate version of these principles formulated for viscosity subsolutions of fully nonlinear inequalities, called the Ahlfors property, and the existence of suitable exhaustion functions called Khas’minskii potentials. Applications, also involving the geometry of submanifolds, will be discussed in the last sections. We conclude by investigating the stability of these maximum principles when we remove polar sets." @default.
- W2783006442 created "2018-01-26" @default.
- W2783006442 creator A5027303235 @default.
- W2783006442 creator A5035809544 @default.
- W2783006442 date "2019-01-01" @default.
- W2783006442 modified "2023-10-01" @default.
- W2783006442 title "Maximum Principles at Infinity and the Ahlfors-Khas’minskii Duality: An Overview" @default.
- W2783006442 cites W1523471994 @default.
- W2783006442 cites W1559997346 @default.
- W2783006442 cites W1561367079 @default.
- W2783006442 cites W1568078059 @default.
- W2783006442 cites W1594939567 @default.
- W2783006442 cites W1698081298 @default.
- W2783006442 cites W175702648 @default.
- W2783006442 cites W1963652842 @default.
- W2783006442 cites W1969768229 @default.
- W2783006442 cites W1977750299 @default.
- W2783006442 cites W1983066773 @default.
- W2783006442 cites W1985341896 @default.
- W2783006442 cites W1987206679 @default.
- W2783006442 cites W2000349527 @default.
- W2783006442 cites W2000739683 @default.
- W2783006442 cites W2000764107 @default.
- W2783006442 cites W2012151066 @default.
- W2783006442 cites W2024280181 @default.
- W2783006442 cites W2029369381 @default.
- W2783006442 cites W2030853157 @default.
- W2783006442 cites W2032316144 @default.
- W2783006442 cites W2066376935 @default.
- W2783006442 cites W2066415735 @default.
- W2783006442 cites W2069507235 @default.
- W2783006442 cites W2077427779 @default.
- W2783006442 cites W2078209456 @default.
- W2783006442 cites W2080513630 @default.
- W2783006442 cites W2080826432 @default.
- W2783006442 cites W2085902286 @default.
- W2783006442 cites W2089814328 @default.
- W2783006442 cites W2090078876 @default.
- W2783006442 cites W2100203406 @default.
- W2783006442 cites W2107369908 @default.
- W2783006442 cites W2128538907 @default.
- W2783006442 cites W2144007560 @default.
- W2783006442 cites W2164748397 @default.
- W2783006442 cites W2171180913 @default.
- W2783006442 cites W2172123234 @default.
- W2783006442 cites W2313993431 @default.
- W2783006442 cites W2345874322 @default.
- W2783006442 cites W2511386662 @default.
- W2783006442 cites W25658323 @default.
- W2783006442 cites W2588366388 @default.
- W2783006442 cites W2624653819 @default.
- W2783006442 cites W2807458931 @default.
- W2783006442 cites W2962785805 @default.
- W2783006442 cites W2963468932 @default.
- W2783006442 cites W2963911347 @default.
- W2783006442 cites W4206033904 @default.
- W2783006442 cites W4206069707 @default.
- W2783006442 cites W4239006344 @default.
- W2783006442 cites W4248006036 @default.
- W2783006442 cites W4248522251 @default.
- W2783006442 doi "https://doi.org/10.1007/978-3-030-18921-1_10" @default.
- W2783006442 hasPublicationYear "2019" @default.
- W2783006442 type Work @default.
- W2783006442 sameAs 2783006442 @default.
- W2783006442 citedByCount "3" @default.
- W2783006442 countsByYear W27830064422021 @default.
- W2783006442 countsByYear W27830064422022 @default.
- W2783006442 crossrefType "book-chapter" @default.
- W2783006442 hasAuthorship W2783006442A5027303235 @default.
- W2783006442 hasAuthorship W2783006442A5035809544 @default.
- W2783006442 hasBestOaLocation W27830064422 @default.
- W2783006442 hasConcept C112972136 @default.
- W2783006442 hasConcept C119857082 @default.
- W2783006442 hasConcept C121332964 @default.
- W2783006442 hasConcept C134306372 @default.
- W2783006442 hasConcept C158622935 @default.
- W2783006442 hasConcept C202444582 @default.
- W2783006442 hasConcept C2778023678 @default.
- W2783006442 hasConcept C28826006 @default.
- W2783006442 hasConcept C33923547 @default.
- W2783006442 hasConcept C41008148 @default.
- W2783006442 hasConcept C62520636 @default.
- W2783006442 hasConcept C7321624 @default.
- W2783006442 hasConceptScore W2783006442C112972136 @default.
- W2783006442 hasConceptScore W2783006442C119857082 @default.
- W2783006442 hasConceptScore W2783006442C121332964 @default.
- W2783006442 hasConceptScore W2783006442C134306372 @default.
- W2783006442 hasConceptScore W2783006442C158622935 @default.
- W2783006442 hasConceptScore W2783006442C202444582 @default.
- W2783006442 hasConceptScore W2783006442C2778023678 @default.
- W2783006442 hasConceptScore W2783006442C28826006 @default.
- W2783006442 hasConceptScore W2783006442C33923547 @default.
- W2783006442 hasConceptScore W2783006442C41008148 @default.
- W2783006442 hasConceptScore W2783006442C62520636 @default.
- W2783006442 hasConceptScore W2783006442C7321624 @default.
- W2783006442 hasLocation W27830064421 @default.
- W2783006442 hasLocation W27830064422 @default.
- W2783006442 hasOpenAccess W2783006442 @default.