Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783008719> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2783008719 endingPage "93" @default.
- W2783008719 startingPage "93" @default.
- W2783008719 abstract "Heterogeneous characteristics of a big data system for intelligent power distribution and utilization have already become more and more prominent, which brings new challenges for the traditional data analysis technologies and restricts the comprehensive management of distribution network assets. In order to solve the problem that heterogeneous data resources of power distribution systems are difficult to be effectively utilized, a novel generative adversarial networks (GANs) based heterogeneous data integration method for intelligent power distribution and utilization is proposed. In the proposed method, GANs theory is introduced to expand the distribution of completed data samples. Then, a so-called peak clustering algorithm is proposed to realize the finite open coverage of the expanded sample space, and repair those incomplete samples to eliminate the heterogeneous characteristics. Finally, in order to realize the integration of the heterogeneous data for intelligent power distribution and utilization, the well-trained discriminator model of GANs is employed to check the restored data samples. The simulation experiments verified the validity and stability of the proposed heterogeneous data integration method, which provides a novel perspective for the further data quality management of power distribution systems." @default.
- W2783008719 created "2018-01-26" @default.
- W2783008719 creator A5004606125 @default.
- W2783008719 creator A5043001105 @default.
- W2783008719 creator A5057618060 @default.
- W2783008719 creator A5071037763 @default.
- W2783008719 date "2018-01-11" @default.
- W2783008719 modified "2023-10-18" @default.
- W2783008719 title "Generative Adversarial Networks Based Heterogeneous Data Integration and Its Application for Intelligent Power Distribution and Utilization" @default.
- W2783008719 cites W1986590528 @default.
- W2783008719 cites W2023124966 @default.
- W2783008719 cites W2045427344 @default.
- W2783008719 cites W2112090702 @default.
- W2783008719 cites W2119866123 @default.
- W2783008719 cites W2121976031 @default.
- W2783008719 cites W2158371613 @default.
- W2783008719 cites W2159128662 @default.
- W2783008719 cites W2165835468 @default.
- W2783008719 cites W2594822359 @default.
- W2783008719 doi "https://doi.org/10.3390/app8010093" @default.
- W2783008719 hasPublicationYear "2018" @default.
- W2783008719 type Work @default.
- W2783008719 sameAs 2783008719 @default.
- W2783008719 citedByCount "5" @default.
- W2783008719 countsByYear W27830087192019 @default.
- W2783008719 countsByYear W27830087192020 @default.
- W2783008719 countsByYear W27830087192021 @default.
- W2783008719 countsByYear W27830087192022 @default.
- W2783008719 crossrefType "journal-article" @default.
- W2783008719 hasAuthorship W2783008719A5004606125 @default.
- W2783008719 hasAuthorship W2783008719A5043001105 @default.
- W2783008719 hasAuthorship W2783008719A5057618060 @default.
- W2783008719 hasAuthorship W2783008719A5071037763 @default.
- W2783008719 hasBestOaLocation W27830087191 @default.
- W2783008719 hasConcept C112972136 @default.
- W2783008719 hasConcept C119599485 @default.
- W2783008719 hasConcept C119857082 @default.
- W2783008719 hasConcept C120314980 @default.
- W2783008719 hasConcept C124101348 @default.
- W2783008719 hasConcept C127413603 @default.
- W2783008719 hasConcept C154945302 @default.
- W2783008719 hasConcept C2779803651 @default.
- W2783008719 hasConcept C41008148 @default.
- W2783008719 hasConcept C62066863 @default.
- W2783008719 hasConcept C72634772 @default.
- W2783008719 hasConcept C73555534 @default.
- W2783008719 hasConcept C75684735 @default.
- W2783008719 hasConcept C76155785 @default.
- W2783008719 hasConcept C94915269 @default.
- W2783008719 hasConceptScore W2783008719C112972136 @default.
- W2783008719 hasConceptScore W2783008719C119599485 @default.
- W2783008719 hasConceptScore W2783008719C119857082 @default.
- W2783008719 hasConceptScore W2783008719C120314980 @default.
- W2783008719 hasConceptScore W2783008719C124101348 @default.
- W2783008719 hasConceptScore W2783008719C127413603 @default.
- W2783008719 hasConceptScore W2783008719C154945302 @default.
- W2783008719 hasConceptScore W2783008719C2779803651 @default.
- W2783008719 hasConceptScore W2783008719C41008148 @default.
- W2783008719 hasConceptScore W2783008719C62066863 @default.
- W2783008719 hasConceptScore W2783008719C72634772 @default.
- W2783008719 hasConceptScore W2783008719C73555534 @default.
- W2783008719 hasConceptScore W2783008719C75684735 @default.
- W2783008719 hasConceptScore W2783008719C76155785 @default.
- W2783008719 hasConceptScore W2783008719C94915269 @default.
- W2783008719 hasIssue "1" @default.
- W2783008719 hasLocation W27830087191 @default.
- W2783008719 hasLocation W27830087192 @default.
- W2783008719 hasOpenAccess W2783008719 @default.
- W2783008719 hasPrimaryLocation W27830087191 @default.
- W2783008719 hasRelatedWork W1596201972 @default.
- W2783008719 hasRelatedWork W191638804 @default.
- W2783008719 hasRelatedWork W1997217298 @default.
- W2783008719 hasRelatedWork W2031483140 @default.
- W2783008719 hasRelatedWork W2064883676 @default.
- W2783008719 hasRelatedWork W2160425906 @default.
- W2783008719 hasRelatedWork W2553893857 @default.
- W2783008719 hasRelatedWork W4280544492 @default.
- W2783008719 hasRelatedWork W4312963184 @default.
- W2783008719 hasRelatedWork W79970639 @default.
- W2783008719 hasVolume "8" @default.
- W2783008719 isParatext "false" @default.
- W2783008719 isRetracted "false" @default.
- W2783008719 magId "2783008719" @default.
- W2783008719 workType "article" @default.