Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783011336> ?p ?o ?g. }
- W2783011336 endingPage "4058" @default.
- W2783011336 startingPage "4033" @default.
- W2783011336 abstract "Abstract. Nitrogen dioxide (NO2) and formaldehyde (HCHO) column data from satellite instruments are used for air quality and climate studies. Both NO2 and HCHO have been identified as precursors to the ozone (O3) and aerosol essential climate variables, and it is essential to quantify and characterise their uncertainties. Here we present an intercomparison of NO2 and HCHO slant column density (SCD) retrievals from four different research groups (BIRA-IASB, IUP Bremen, and KNMI as part of the Quality Assurance for Essential Climate Variables (QA4ECV) project consortium, and NASA) and from the OMI and GOME-2A instruments. Our evaluation is motivated by recent improvements in differential optical absorption spectroscopy (DOAS) fitting techniques and by the desire to provide a fully traceable uncertainty budget for the climate data record generated within QA4ECV. The improved NO2 and HCHO SCD values are in close agreement but with substantial differences in the reported uncertainties between groups and instruments. To check the DOAS uncertainties, we use an independent estimate based on the spatial variability of the SCDs within a remote region. For NO2, we find the smallest uncertainties from the new QA4ECV retrieval (0.8 × 1015 molec. cm−2 for both instruments over their mission lifetimes). Relative to earlier approaches, the QA4ECV NO2 retrieval shows better agreement between DOAS and statistical uncertainty estimates, suggesting that the improved QA4ECV NO2 retrieval has reduced but not altogether eliminated systematic errors in the fitting approach. For HCHO, we reach similar conclusions (QA4ECV uncertainties of 8–12 × 1015 molec. cm−2), but the closeness between the DOAS and statistical uncertainty estimates suggests that HCHO uncertainties are indeed dominated by random noise from the satellite's level 1 data. We find that SCD uncertainties are smallest for high top-of-atmosphere reflectance levels with high measurement signal-to-noise ratios. From 2005 to 2015, OMI NO2 SCD uncertainties increase by 1–2 % year−1, which is related to detector degradation and stripes, but OMI HCHO SCD uncertainties are remarkably stable (increase < 1 % year−1) and this is related to the use of Earth radiance reference spectra which reduces stripes. For GOME-2A, NO2 and HCHO SCD uncertainties increased by 7–9 and 11–15 % year−1 respectively up until September 2009, when heating of the instrument markedly reduced further throughput loss, stabilising the degradation of SCD uncertainty to < 3 % year−1 for 2009–2015. Our work suggests that the NO2 SCD uncertainty largely consists of a random component ( ∼ 65 % of the total uncertainty) as a result of the propagation of measurement noise but also of a substantial systematic component ( ∼ 35 % of the total uncertainty) mainly from stripe effects. Averaging over multiple pixels in space and/or time can significantly reduce the SCD uncertainties. This suggests that trend detection in OMI, GOME-2 NO2, and HCHO time series is not limited by the spectral fitting but rather by the adequacy of assumptions on the atmospheric state in the later air mass factor (AMF) calculation step." @default.
- W2783011336 created "2018-01-26" @default.
- W2783011336 creator A5002922687 @default.
- W2783011336 creator A5009711392 @default.
- W2783011336 creator A5026762238 @default.
- W2783011336 creator A5028239564 @default.
- W2783011336 creator A5033437844 @default.
- W2783011336 creator A5039268929 @default.
- W2783011336 creator A5042983625 @default.
- W2783011336 creator A5057840118 @default.
- W2783011336 creator A5081433447 @default.
- W2783011336 creator A5085740285 @default.
- W2783011336 creator A5088459720 @default.
- W2783011336 creator A5090403652 @default.
- W2783011336 date "2018-07-11" @default.
- W2783011336 modified "2023-10-07" @default.
- W2783011336 title "Improved slant column density retrieval of nitrogen dioxide and formaldehyde for OMI and GOME-2A from QA4ECV: intercomparison, uncertainty characterisation, and trends" @default.
- W2783011336 cites W1536962386 @default.
- W2783011336 cites W1904230536 @default.
- W2783011336 cites W1939811794 @default.
- W2783011336 cites W1966243482 @default.
- W2783011336 cites W1981810010 @default.
- W2783011336 cites W2001463668 @default.
- W2783011336 cites W2002381855 @default.
- W2783011336 cites W2004849950 @default.
- W2783011336 cites W2005980051 @default.
- W2783011336 cites W2010435640 @default.
- W2783011336 cites W2012326601 @default.
- W2783011336 cites W2035070517 @default.
- W2783011336 cites W2048420811 @default.
- W2783011336 cites W2048458521 @default.
- W2783011336 cites W2049007154 @default.
- W2783011336 cites W2061332573 @default.
- W2783011336 cites W2069825443 @default.
- W2783011336 cites W2079115768 @default.
- W2783011336 cites W2093634559 @default.
- W2783011336 cites W2094937775 @default.
- W2783011336 cites W2101495457 @default.
- W2783011336 cites W2101619949 @default.
- W2783011336 cites W2102873395 @default.
- W2783011336 cites W2115147528 @default.
- W2783011336 cites W2116228372 @default.
- W2783011336 cites W2119774937 @default.
- W2783011336 cites W2119783829 @default.
- W2783011336 cites W2125312618 @default.
- W2783011336 cites W2126571464 @default.
- W2783011336 cites W2129437219 @default.
- W2783011336 cites W2130672195 @default.
- W2783011336 cites W2145085867 @default.
- W2783011336 cites W2154001600 @default.
- W2783011336 cites W2155829461 @default.
- W2783011336 cites W2158395027 @default.
- W2783011336 cites W2165471937 @default.
- W2783011336 cites W2166478568 @default.
- W2783011336 cites W2334456851 @default.
- W2783011336 cites W2471279947 @default.
- W2783011336 cites W2534633786 @default.
- W2783011336 cites W2545562249 @default.
- W2783011336 cites W2546687420 @default.
- W2783011336 cites W2568815382 @default.
- W2783011336 cites W2575798396 @default.
- W2783011336 cites W2602832869 @default.
- W2783011336 cites W2617809385 @default.
- W2783011336 cites W2770226331 @default.
- W2783011336 cites W2978491875 @default.
- W2783011336 cites W4213327538 @default.
- W2783011336 cites W4296432369 @default.
- W2783011336 doi "https://doi.org/10.5194/amt-11-4033-2018" @default.
- W2783011336 hasPublicationYear "2018" @default.
- W2783011336 type Work @default.
- W2783011336 sameAs 2783011336 @default.
- W2783011336 citedByCount "60" @default.
- W2783011336 countsByYear W27830113362018 @default.
- W2783011336 countsByYear W27830113362019 @default.
- W2783011336 countsByYear W27830113362020 @default.
- W2783011336 countsByYear W27830113362021 @default.
- W2783011336 countsByYear W27830113362022 @default.
- W2783011336 countsByYear W27830113362023 @default.
- W2783011336 crossrefType "journal-article" @default.
- W2783011336 hasAuthorship W2783011336A5002922687 @default.
- W2783011336 hasAuthorship W2783011336A5009711392 @default.
- W2783011336 hasAuthorship W2783011336A5026762238 @default.
- W2783011336 hasAuthorship W2783011336A5028239564 @default.
- W2783011336 hasAuthorship W2783011336A5033437844 @default.
- W2783011336 hasAuthorship W2783011336A5039268929 @default.
- W2783011336 hasAuthorship W2783011336A5042983625 @default.
- W2783011336 hasAuthorship W2783011336A5057840118 @default.
- W2783011336 hasAuthorship W2783011336A5081433447 @default.
- W2783011336 hasAuthorship W2783011336A5085740285 @default.
- W2783011336 hasAuthorship W2783011336A5088459720 @default.
- W2783011336 hasAuthorship W2783011336A5090403652 @default.
- W2783011336 hasBestOaLocation W27830113361 @default.
- W2783011336 hasConcept C120665830 @default.
- W2783011336 hasConcept C121332964 @default.
- W2783011336 hasConcept C125287762 @default.
- W2783011336 hasConcept C1276947 @default.
- W2783011336 hasConcept C153294291 @default.
- W2783011336 hasConcept C178790620 @default.