Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783017988> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2783017988 abstract "This paper considers a general class of stochastic optimization problem for multiagent systems. We assume that the probability distribution of the uncertain parameters is unknown to the agents and instead, each agent gathers a certain number of samples of it. The objective for the agents is to cooperatively find, using the available data, a solution that has performance guarantees for the stochastic problem. To this end, we formulate a data-driven distributionally robust optimization (DRO) problem using Wasserstein ambiguity sets that has the desired performance guarantees. With the aim of solving this optimization in a distributed manner, we identify a convex-concave modified Lagrangian function whose saddle points are in correspondence with the optimizers of the DRO problem. We then design our distributed algorithm as the gradient descent in the convex variable and gradient ascent in the concave variable of this Lagrangian function. Our convergence analysis shows that the trajectories of this dynamics converge asymptotically to an optimizer of the DRO problem. Simulations illustrate our results." @default.
- W2783017988 created "2018-01-26" @default.
- W2783017988 creator A5027913099 @default.
- W2783017988 creator A5035350909 @default.
- W2783017988 date "2017-10-01" @default.
- W2783017988 modified "2023-09-27" @default.
- W2783017988 title "Data-driven distributed optimization using Wasserstein ambiguity sets" @default.
- W2783017988 cites W1788292158 @default.
- W2783017988 cites W1979795912 @default.
- W2783017988 cites W2006041100 @default.
- W2783017988 cites W2062536941 @default.
- W2783017988 cites W2962717811 @default.
- W2783017988 cites W2963134136 @default.
- W2783017988 cites W2963135216 @default.
- W2783017988 cites W4239375476 @default.
- W2783017988 cites W760153864 @default.
- W2783017988 doi "https://doi.org/10.1109/allerton.2017.8262716" @default.
- W2783017988 hasPublicationYear "2017" @default.
- W2783017988 type Work @default.
- W2783017988 sameAs 2783017988 @default.
- W2783017988 citedByCount "9" @default.
- W2783017988 countsByYear W27830179882017 @default.
- W2783017988 countsByYear W27830179882018 @default.
- W2783017988 countsByYear W27830179882019 @default.
- W2783017988 countsByYear W27830179882020 @default.
- W2783017988 countsByYear W27830179882021 @default.
- W2783017988 countsByYear W27830179882022 @default.
- W2783017988 crossrefType "proceedings-article" @default.
- W2783017988 hasAuthorship W2783017988A5027913099 @default.
- W2783017988 hasAuthorship W2783017988A5035350909 @default.
- W2783017988 hasConcept C120314980 @default.
- W2783017988 hasConcept C199360897 @default.
- W2783017988 hasConcept C2780522230 @default.
- W2783017988 hasConcept C41008148 @default.
- W2783017988 hasConceptScore W2783017988C120314980 @default.
- W2783017988 hasConceptScore W2783017988C199360897 @default.
- W2783017988 hasConceptScore W2783017988C2780522230 @default.
- W2783017988 hasConceptScore W2783017988C41008148 @default.
- W2783017988 hasLocation W27830179881 @default.
- W2783017988 hasOpenAccess W2783017988 @default.
- W2783017988 hasPrimaryLocation W27830179881 @default.
- W2783017988 hasRelatedWork W1485627940 @default.
- W2783017988 hasRelatedWork W1587227328 @default.
- W2783017988 hasRelatedWork W1596201972 @default.
- W2783017988 hasRelatedWork W1880774266 @default.
- W2783017988 hasRelatedWork W1967954938 @default.
- W2783017988 hasRelatedWork W2028061998 @default.
- W2783017988 hasRelatedWork W2126451717 @default.
- W2783017988 hasRelatedWork W2160425906 @default.
- W2783017988 hasRelatedWork W2347673410 @default.
- W2783017988 hasRelatedWork W2998813341 @default.
- W2783017988 isParatext "false" @default.
- W2783017988 isRetracted "false" @default.
- W2783017988 magId "2783017988" @default.
- W2783017988 workType "article" @default.