Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783060250> ?p ?o ?g. }
- W2783060250 abstract "Motor imagery (MI) signals recorded via electroencephalography (EEG) is the most convenient basis for designing brain-computer interfaces (BCIs). As MI based BCI provides high degree of freedom, it helps motor disabled people to communicate with the device by performing sequence of MI tasks. But inter-subject variability, extracting user-specific features and increasing accuracy of the classifier is still a challenging task in MI based BCIs. In this work, we propose an approach to overcome the above mentioned issues. The proposed approach follows the pipeline such as channel selection, band-pass filter based CSP (common spatial pattern), feature extraction, feature selection using two different techniques and modeling using Gaussian Naïve Bayes (GNB) classifier. Since the optimal features are selected by feature selection techniques, it helps to overcome inter-subject variability and improves performance of GNB classifier. To the best of our knowledge, the proposed methodology has not been used for MI-based BCI applications. The proposed approach is validated using BCI competition III dataset IVa. The result of our proposed approach is compared with two conventional classifiers such as linear discriminant analysis (LDA) and support vector machine (SVM). The results prove that the proposed method provides an improved accuracy than LDA and SVM classifiers. The proposed method can be further developed to design a reliable and real-time MI-based BCI application." @default.
- W2783060250 created "2018-01-26" @default.
- W2783060250 creator A5009031009 @default.
- W2783060250 creator A5019043360 @default.
- W2783060250 creator A5032809289 @default.
- W2783060250 creator A5066216499 @default.
- W2783060250 creator A5075453721 @default.
- W2783060250 creator A5086586480 @default.
- W2783060250 date "2017-10-01" @default.
- W2783060250 modified "2023-09-30" @default.
- W2783060250 title "Motor Imagery EEG Signal Processing and Classification Using Machine Learning Approach" @default.
- W2783060250 cites W1971790766 @default.
- W2783060250 cites W2024486946 @default.
- W2783060250 cites W2036790630 @default.
- W2783060250 cites W2055070433 @default.
- W2783060250 cites W2075647286 @default.
- W2783060250 cites W2076170850 @default.
- W2783060250 cites W2090262261 @default.
- W2783060250 cites W2099509424 @default.
- W2783060250 cites W2106006415 @default.
- W2783060250 cites W2115126565 @default.
- W2783060250 cites W2131321253 @default.
- W2783060250 cites W2140413964 @default.
- W2783060250 cites W2142280324 @default.
- W2783060250 cites W2147174595 @default.
- W2783060250 cites W2147854680 @default.
- W2783060250 cites W2154053567 @default.
- W2783060250 cites W2167334234 @default.
- W2783060250 cites W2169747626 @default.
- W2783060250 cites W2171872429 @default.
- W2783060250 cites W2213712841 @default.
- W2783060250 cites W2265056729 @default.
- W2783060250 cites W2354225344 @default.
- W2783060250 cites W2498264865 @default.
- W2783060250 doi "https://doi.org/10.1109/ictcs.2017.15" @default.
- W2783060250 hasPublicationYear "2017" @default.
- W2783060250 type Work @default.
- W2783060250 sameAs 2783060250 @default.
- W2783060250 citedByCount "16" @default.
- W2783060250 countsByYear W27830602502019 @default.
- W2783060250 countsByYear W27830602502020 @default.
- W2783060250 countsByYear W27830602502021 @default.
- W2783060250 countsByYear W27830602502022 @default.
- W2783060250 countsByYear W27830602502023 @default.
- W2783060250 crossrefType "proceedings-article" @default.
- W2783060250 hasAuthorship W2783060250A5009031009 @default.
- W2783060250 hasAuthorship W2783060250A5019043360 @default.
- W2783060250 hasAuthorship W2783060250A5032809289 @default.
- W2783060250 hasAuthorship W2783060250A5066216499 @default.
- W2783060250 hasAuthorship W2783060250A5075453721 @default.
- W2783060250 hasAuthorship W2783060250A5086586480 @default.
- W2783060250 hasConcept C118552586 @default.
- W2783060250 hasConcept C119857082 @default.
- W2783060250 hasConcept C12267149 @default.
- W2783060250 hasConcept C148483581 @default.
- W2783060250 hasConcept C153180895 @default.
- W2783060250 hasConcept C154945302 @default.
- W2783060250 hasConcept C15744967 @default.
- W2783060250 hasConcept C173201364 @default.
- W2783060250 hasConcept C28490314 @default.
- W2783060250 hasConcept C41008148 @default.
- W2783060250 hasConcept C52001869 @default.
- W2783060250 hasConcept C522805319 @default.
- W2783060250 hasConcept C52620605 @default.
- W2783060250 hasConcept C52622490 @default.
- W2783060250 hasConcept C54808283 @default.
- W2783060250 hasConcept C69738355 @default.
- W2783060250 hasConcept C95623464 @default.
- W2783060250 hasConceptScore W2783060250C118552586 @default.
- W2783060250 hasConceptScore W2783060250C119857082 @default.
- W2783060250 hasConceptScore W2783060250C12267149 @default.
- W2783060250 hasConceptScore W2783060250C148483581 @default.
- W2783060250 hasConceptScore W2783060250C153180895 @default.
- W2783060250 hasConceptScore W2783060250C154945302 @default.
- W2783060250 hasConceptScore W2783060250C15744967 @default.
- W2783060250 hasConceptScore W2783060250C173201364 @default.
- W2783060250 hasConceptScore W2783060250C28490314 @default.
- W2783060250 hasConceptScore W2783060250C41008148 @default.
- W2783060250 hasConceptScore W2783060250C52001869 @default.
- W2783060250 hasConceptScore W2783060250C522805319 @default.
- W2783060250 hasConceptScore W2783060250C52620605 @default.
- W2783060250 hasConceptScore W2783060250C52622490 @default.
- W2783060250 hasConceptScore W2783060250C54808283 @default.
- W2783060250 hasConceptScore W2783060250C69738355 @default.
- W2783060250 hasConceptScore W2783060250C95623464 @default.
- W2783060250 hasLocation W27830602501 @default.
- W2783060250 hasOpenAccess W2783060250 @default.
- W2783060250 hasPrimaryLocation W27830602501 @default.
- W2783060250 hasRelatedWork W2050399430 @default.
- W2783060250 hasRelatedWork W2124425911 @default.
- W2783060250 hasRelatedWork W2134480811 @default.
- W2783060250 hasRelatedWork W2586789682 @default.
- W2783060250 hasRelatedWork W2783179984 @default.
- W2783060250 hasRelatedWork W2889388813 @default.
- W2783060250 hasRelatedWork W2951758041 @default.
- W2783060250 hasRelatedWork W3093938363 @default.
- W2783060250 hasRelatedWork W3177726083 @default.
- W2783060250 hasRelatedWork W4200527745 @default.
- W2783060250 isParatext "false" @default.
- W2783060250 isRetracted "false" @default.