Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783082511> ?p ?o ?g. }
- W2783082511 endingPage "145" @default.
- W2783082511 startingPage "145" @default.
- W2783082511 abstract "Robust gait segmentation is the basis for mobile gait analysis. A range of methods have been applied and evaluated for gait segmentation of healthy and pathological gait bouts. However, a unified evaluation of gait segmentation methods in Parkinson’s disease (PD) is missing. In this paper, we compare four prevalent gait segmentation methods in order to reveal their strengths and drawbacks in gait processing. We considered peak detection from event-based methods, two variations of dynamic time warping from template matching methods, and hierarchical hidden Markov models (hHMMs) from machine learning methods. To evaluate the methods, we included two supervised and instrumented gait tests that are widely used in the examination of Parkinsonian gait. In the first experiment, a sequence of strides from instructed straight walks was measured from 10 PD patients. In the second experiment, a more heterogeneous assessment paradigm was used from an additional 34 PD patients, including straight walks and turning strides as well as non-stride movements. The goal of the latter experiment was to evaluate the methods in challenging situations including turning strides and non-stride movements. Results showed no significant difference between the methods for the first scenario, in which all methods achieved an almost 100% accuracy in terms of F-score. Hence, we concluded that in the case of a predefined and homogeneous sequence of strides, all methods can be applied equally. However, in the second experiment the difference between methods became evident, with the hHMM obtaining a 96% F-score and significantly outperforming the other methods. The hHMM also proved promising in distinguishing between strides and non-stride movements, which is critical for clinical gait analysis. Our results indicate that both the instrumented test procedure and the required stride segmentation algorithm have to be selected adequately in order to support and complement classical clinical examination by sensor-based movement assessment." @default.
- W2783082511 created "2018-01-26" @default.
- W2783082511 creator A5014144494 @default.
- W2783082511 creator A5020113707 @default.
- W2783082511 creator A5056745672 @default.
- W2783082511 creator A5059890342 @default.
- W2783082511 creator A5066832631 @default.
- W2783082511 creator A5073414196 @default.
- W2783082511 creator A5088917453 @default.
- W2783082511 date "2018-01-06" @default.
- W2783082511 modified "2023-09-25" @default.
- W2783082511 title "Segmentation of Gait Sequences in Sensor-Based Movement Analysis: A Comparison of Methods in Parkinson’s Disease" @default.
- W2783082511 cites W1636244751 @default.
- W2783082511 cites W1895240743 @default.
- W2783082511 cites W1900048720 @default.
- W2783082511 cites W1971261723 @default.
- W2783082511 cites W1974704788 @default.
- W2783082511 cites W1976628879 @default.
- W2783082511 cites W1981166740 @default.
- W2783082511 cites W1991133427 @default.
- W2783082511 cites W1994395028 @default.
- W2783082511 cites W1999068643 @default.
- W2783082511 cites W2013337604 @default.
- W2783082511 cites W2015749893 @default.
- W2783082511 cites W2019539135 @default.
- W2783082511 cites W2034280807 @default.
- W2783082511 cites W2058190976 @default.
- W2783082511 cites W2059312807 @default.
- W2783082511 cites W2064963539 @default.
- W2783082511 cites W2064996887 @default.
- W2783082511 cites W2066825169 @default.
- W2783082511 cites W2067428313 @default.
- W2783082511 cites W2076266873 @default.
- W2783082511 cites W2078749671 @default.
- W2783082511 cites W2087048290 @default.
- W2783082511 cites W2093135704 @default.
- W2783082511 cites W2105078734 @default.
- W2783082511 cites W2105594594 @default.
- W2783082511 cites W2111737705 @default.
- W2783082511 cites W2116496166 @default.
- W2783082511 cites W2122365325 @default.
- W2783082511 cites W2132279149 @default.
- W2783082511 cites W2140978740 @default.
- W2783082511 cites W2146871184 @default.
- W2783082511 cites W2155815855 @default.
- W2783082511 cites W2160053034 @default.
- W2783082511 cites W2162908184 @default.
- W2783082511 cites W2169391263 @default.
- W2783082511 cites W2237739092 @default.
- W2783082511 cites W2343290709 @default.
- W2783082511 cites W2412822360 @default.
- W2783082511 cites W2606951227 @default.
- W2783082511 cites W2617901107 @default.
- W2783082511 cites W2730932226 @default.
- W2783082511 cites W2749718288 @default.
- W2783082511 cites W2756463065 @default.
- W2783082511 cites W2761505665 @default.
- W2783082511 cites W2766046425 @default.
- W2783082511 cites W2919115771 @default.
- W2783082511 cites W3101801952 @default.
- W2783082511 cites W4205130185 @default.
- W2783082511 cites W72718568 @default.
- W2783082511 doi "https://doi.org/10.3390/s18010145" @default.
- W2783082511 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5796275" @default.
- W2783082511 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29316636" @default.
- W2783082511 hasPublicationYear "2018" @default.
- W2783082511 type Work @default.
- W2783082511 sameAs 2783082511 @default.
- W2783082511 citedByCount "51" @default.
- W2783082511 countsByYear W27830825112018 @default.
- W2783082511 countsByYear W27830825112019 @default.
- W2783082511 countsByYear W27830825112020 @default.
- W2783082511 countsByYear W27830825112021 @default.
- W2783082511 countsByYear W27830825112022 @default.
- W2783082511 countsByYear W27830825112023 @default.
- W2783082511 crossrefType "journal-article" @default.
- W2783082511 hasAuthorship W2783082511A5014144494 @default.
- W2783082511 hasAuthorship W2783082511A5020113707 @default.
- W2783082511 hasAuthorship W2783082511A5056745672 @default.
- W2783082511 hasAuthorship W2783082511A5059890342 @default.
- W2783082511 hasAuthorship W2783082511A5066832631 @default.
- W2783082511 hasAuthorship W2783082511A5073414196 @default.
- W2783082511 hasAuthorship W2783082511A5088917453 @default.
- W2783082511 hasBestOaLocation W27830825111 @default.
- W2783082511 hasConcept C105795698 @default.
- W2783082511 hasConcept C151800584 @default.
- W2783082511 hasConcept C153180895 @default.
- W2783082511 hasConcept C154945302 @default.
- W2783082511 hasConcept C165064840 @default.
- W2783082511 hasConcept C173906292 @default.
- W2783082511 hasConcept C18007350 @default.
- W2783082511 hasConcept C20220851 @default.
- W2783082511 hasConcept C23224414 @default.
- W2783082511 hasConcept C33923547 @default.
- W2783082511 hasConcept C38652104 @default.
- W2783082511 hasConcept C41008148 @default.
- W2783082511 hasConcept C71924100 @default.
- W2783082511 hasConcept C88516994 @default.