Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783102070> ?p ?o ?g. }
- W2783102070 endingPage "166" @default.
- W2783102070 startingPage "155" @default.
- W2783102070 abstract "Pelagic animals that form deep sea scattering layers (DSLs) represent an important link in the food web between zooplankton and top predators. While estimating the composition, density and location of the DSL is important to understand mesopelagic ecosystem dynamics and to predict top predators’ distribution, DSL composition and density are often estimated from trawls which may be biased in terms of extrusion, avoidance, and gear-associated biases. Instead, location and biomass of DSLs can be estimated from active acoustic techniques, though estimates are often in aggregate without regard to size or taxon specific information. For the first time in the open ocean, we used a DIDSON sonar to characterize the fauna in DSLs. Estimates of the numerical density and length of animals at different depths and locations along the Kona coast of the Island of Hawaii were determined. Data were collected below and inside the DSLs with the sonar mounted on a profiler. A total of 7068 animals were counted and sized. We estimated numerical densities ranging from 1 to 7 animals/m3 and individuals as long as 3 m were detected. These numerical densities were orders of magnitude higher than those estimated from trawls and average sizes of animals were much larger as well. A mixed model was used to characterize numerical density and length of animals as a function of deep sea layer sampled, location, time of day, and day of the year. Numerical density and length of animals varied by month, with numerical density also a function of depth. The DIDSON proved to be a good tool for open-ocean/deep-sea estimation of the numerical density and size of marine animals, especially larger ones. Further work is needed to understand how this methodology relates to estimates of volume backscatters obtained with standard echosounding techniques, density measures obtained with other sampling methodologies, and to precisely evaluate sampling biases." @default.
- W2783102070 created "2018-01-26" @default.
- W2783102070 creator A5026348656 @default.
- W2783102070 creator A5065773154 @default.
- W2783102070 creator A5066708764 @default.
- W2783102070 creator A5067284313 @default.
- W2783102070 creator A5068248490 @default.
- W2783102070 date "2018-01-01" @default.
- W2783102070 modified "2023-09-25" @default.
- W2783102070 title "Deep sea animal density and size estimated using a Dual-frequency IDentification SONar (DIDSON) offshore the island of Hawaii" @default.
- W2783102070 cites W1499846718 @default.
- W2783102070 cites W1542411750 @default.
- W2783102070 cites W1721331619 @default.
- W2783102070 cites W1951724000 @default.
- W2783102070 cites W1965731752 @default.
- W2783102070 cites W1973953019 @default.
- W2783102070 cites W1976775276 @default.
- W2783102070 cites W1983387264 @default.
- W2783102070 cites W1999478461 @default.
- W2783102070 cites W2005959084 @default.
- W2783102070 cites W2008783009 @default.
- W2783102070 cites W2011214089 @default.
- W2783102070 cites W2018267582 @default.
- W2783102070 cites W2020511810 @default.
- W2783102070 cites W2024831984 @default.
- W2783102070 cites W2027250963 @default.
- W2783102070 cites W2027431378 @default.
- W2783102070 cites W2028094408 @default.
- W2783102070 cites W2028858745 @default.
- W2783102070 cites W2034941158 @default.
- W2783102070 cites W2044409664 @default.
- W2783102070 cites W2044938893 @default.
- W2783102070 cites W2046487799 @default.
- W2783102070 cites W2050287340 @default.
- W2783102070 cites W2051767235 @default.
- W2783102070 cites W2051925766 @default.
- W2783102070 cites W2054543163 @default.
- W2783102070 cites W2059539229 @default.
- W2783102070 cites W2068792066 @default.
- W2783102070 cites W2077342309 @default.
- W2783102070 cites W2077792676 @default.
- W2783102070 cites W2080156658 @default.
- W2783102070 cites W2084423549 @default.
- W2783102070 cites W2085741591 @default.
- W2783102070 cites W2089610694 @default.
- W2783102070 cites W2099984711 @default.
- W2783102070 cites W2103294245 @default.
- W2783102070 cites W2104721571 @default.
- W2783102070 cites W2112942233 @default.
- W2783102070 cites W2118469610 @default.
- W2783102070 cites W2124737696 @default.
- W2783102070 cites W2128228298 @default.
- W2783102070 cites W2131814432 @default.
- W2783102070 cites W2132346081 @default.
- W2783102070 cites W2136159701 @default.
- W2783102070 cites W2137641582 @default.
- W2783102070 cites W2143370721 @default.
- W2783102070 cites W2151271680 @default.
- W2783102070 cites W2154542626 @default.
- W2783102070 cites W2159267296 @default.
- W2783102070 cites W2160186035 @default.
- W2783102070 cites W2160683250 @default.
- W2783102070 cites W2178377291 @default.
- W2783102070 cites W2324545111 @default.
- W2783102070 cites W2325595568 @default.
- W2783102070 cites W2527820253 @default.
- W2783102070 cites W2585013945 @default.
- W2783102070 cites W4236751459 @default.
- W2783102070 doi "https://doi.org/10.1016/j.pocean.2018.01.002" @default.
- W2783102070 hasPublicationYear "2018" @default.
- W2783102070 type Work @default.
- W2783102070 sameAs 2783102070 @default.
- W2783102070 citedByCount "9" @default.
- W2783102070 countsByYear W27831020702018 @default.
- W2783102070 countsByYear W27831020702019 @default.
- W2783102070 countsByYear W27831020702021 @default.
- W2783102070 countsByYear W27831020702022 @default.
- W2783102070 countsByYear W27831020702023 @default.
- W2783102070 crossrefType "journal-article" @default.
- W2783102070 hasAuthorship W2783102070A5026348656 @default.
- W2783102070 hasAuthorship W2783102070A5065773154 @default.
- W2783102070 hasAuthorship W2783102070A5066708764 @default.
- W2783102070 hasAuthorship W2783102070A5067284313 @default.
- W2783102070 hasAuthorship W2783102070A5068248490 @default.
- W2783102070 hasBestOaLocation W27831020701 @default.
- W2783102070 hasConcept C109931610 @default.
- W2783102070 hasConcept C111368507 @default.
- W2783102070 hasConcept C127313418 @default.
- W2783102070 hasConcept C158836135 @default.
- W2783102070 hasConcept C162284963 @default.
- W2783102070 hasConcept C188382862 @default.
- W2783102070 hasConcept C18903297 @default.
- W2783102070 hasConcept C33275205 @default.
- W2783102070 hasConcept C39432304 @default.
- W2783102070 hasConcept C555745239 @default.
- W2783102070 hasConcept C77942228 @default.
- W2783102070 hasConcept C86803240 @default.
- W2783102070 hasConceptScore W2783102070C109931610 @default.