Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783102654> ?p ?o ?g. }
- W2783102654 abstract "Numerical lattice quantum chromodynamics studies of the strong interaction are important in many aspects of particle and nuclear physics. Such studies require significant computing resources to undertake. A number of proposed methods promise improved efficiency of lattice calculations, and access to regions of parameter space that are currently computationally intractable, via multi-scale action-matching approaches that necessitate parametric regression of generated lattice datasets. The applicability of machine learning to this regression task is investigated, with deep neural networks found to provide an efficient solution even in cases where approaches such as principal component analysis fail. The high information content and complex symmetries inherent in lattice QCD datasets require custom neural network layers to be introduced and present opportunities for further development." @default.
- W2783102654 created "2018-01-26" @default.
- W2783102654 creator A5006018763 @default.
- W2783102654 creator A5016998000 @default.
- W2783102654 creator A5080660291 @default.
- W2783102654 date "2018-05-16" @default.
- W2783102654 modified "2023-10-16" @default.
- W2783102654 title "Machine learning action parameters in lattice quantum chromodynamics" @default.
- W2783102654 cites W1572063013 @default.
- W2783102654 cites W1597171048 @default.
- W2783102654 cites W1715636977 @default.
- W2783102654 cites W1965555277 @default.
- W2783102654 cites W1969326665 @default.
- W2783102654 cites W1979191599 @default.
- W2783102654 cites W1999404891 @default.
- W2783102654 cites W2010092785 @default.
- W2783102654 cites W2022883212 @default.
- W2783102654 cites W2025341678 @default.
- W2783102654 cites W2032601722 @default.
- W2783102654 cites W2035248948 @default.
- W2783102654 cites W2037511655 @default.
- W2783102654 cites W2049996421 @default.
- W2783102654 cites W2052611179 @default.
- W2783102654 cites W2059448777 @default.
- W2783102654 cites W2063703901 @default.
- W2783102654 cites W2065997324 @default.
- W2783102654 cites W2068460895 @default.
- W2783102654 cites W2069646984 @default.
- W2783102654 cites W2070217859 @default.
- W2783102654 cites W2071128523 @default.
- W2783102654 cites W2071141619 @default.
- W2783102654 cites W2079454932 @default.
- W2783102654 cites W2082143763 @default.
- W2783102654 cites W2101926813 @default.
- W2783102654 cites W2102909657 @default.
- W2783102654 cites W2103020160 @default.
- W2783102654 cites W2103835236 @default.
- W2783102654 cites W2122925692 @default.
- W2783102654 cites W2131404542 @default.
- W2783102654 cites W2132481658 @default.
- W2783102654 cites W2146950091 @default.
- W2783102654 cites W2158995426 @default.
- W2783102654 cites W2164370980 @default.
- W2783102654 cites W2172949211 @default.
- W2783102654 cites W2196535466 @default.
- W2783102654 cites W2294798173 @default.
- W2783102654 cites W2337082154 @default.
- W2783102654 cites W2399767476 @default.
- W2783102654 cites W2414456771 @default.
- W2783102654 cites W2418636584 @default.
- W2783102654 cites W2418689459 @default.
- W2783102654 cites W2419175238 @default.
- W2783102654 cites W2530117613 @default.
- W2783102654 cites W2530819665 @default.
- W2783102654 cites W2588986264 @default.
- W2783102654 cites W2592477384 @default.
- W2783102654 cites W2615003501 @default.
- W2783102654 cites W2750673150 @default.
- W2783102654 cites W3098396772 @default.
- W2783102654 cites W3101336693 @default.
- W2783102654 cites W3104239185 @default.
- W2783102654 cites W3105821172 @default.
- W2783102654 cites W3106141938 @default.
- W2783102654 cites W3121823746 @default.
- W2783102654 cites W3127388279 @default.
- W2783102654 cites W3145935869 @default.
- W2783102654 cites W4231440689 @default.
- W2783102654 cites W4233045210 @default.
- W2783102654 cites W4237096304 @default.
- W2783102654 cites W4300402905 @default.
- W2783102654 doi "https://doi.org/10.1103/physrevd.97.094506" @default.
- W2783102654 hasPublicationYear "2018" @default.
- W2783102654 type Work @default.
- W2783102654 sameAs 2783102654 @default.
- W2783102654 citedByCount "52" @default.
- W2783102654 countsByYear W27831026542018 @default.
- W2783102654 countsByYear W27831026542019 @default.
- W2783102654 countsByYear W27831026542020 @default.
- W2783102654 countsByYear W27831026542021 @default.
- W2783102654 countsByYear W27831026542022 @default.
- W2783102654 countsByYear W27831026542023 @default.
- W2783102654 crossrefType "journal-article" @default.
- W2783102654 hasAuthorship W2783102654A5006018763 @default.
- W2783102654 hasAuthorship W2783102654A5016998000 @default.
- W2783102654 hasAuthorship W2783102654A5080660291 @default.
- W2783102654 hasBestOaLocation W27831026541 @default.
- W2783102654 hasConcept C105795698 @default.
- W2783102654 hasConcept C109214941 @default.
- W2783102654 hasConcept C117137515 @default.
- W2783102654 hasConcept C117251300 @default.
- W2783102654 hasConcept C119857082 @default.
- W2783102654 hasConcept C121332964 @default.
- W2783102654 hasConcept C121864883 @default.
- W2783102654 hasConcept C138817895 @default.
- W2783102654 hasConcept C154945302 @default.
- W2783102654 hasConcept C181830111 @default.
- W2783102654 hasConcept C24890656 @default.
- W2783102654 hasConcept C2524010 @default.
- W2783102654 hasConcept C2781204021 @default.
- W2783102654 hasConcept C33332235 @default.