Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783117537> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2783117537 abstract "In biostatistics, propensity score is a common approach to analyze the imbalance of covariate and process confounding covariates to eliminate differences between groups. While there are an abundant amount of methods to compute propensity score, a common issue of them is the corrupted labels in the dataset. For example, the data collected from the patients could contain samples that are treated mistakenly, and the computing methods could incorporate them as a misleading information. In this paper, we propose a Machine Learning-based method to handle the problem. Specifically, we utilize the fact that the majority of sample should be labeled with the correct instance and design an approach to first cluster the data with spectral clustering and then sample a new dataset with a distribution processed from the clustering results. The propensity score is computed by Xgboost, and a mathematical justification of our method is provided in this paper. The experimental results illustrate that xgboost propensity scores computing with the data processed by our method could outperform the same method with original data, and the advantages of our method increases as we add some artificial corruptions to the dataset. Meanwhile, the implementation of xgboost to compute propensity score for multiple treatments is also a pioneering work in the area." @default.
- W2783117537 created "2018-01-26" @default.
- W2783117537 creator A5013038112 @default.
- W2783117537 creator A5032157321 @default.
- W2783117537 creator A5074494657 @default.
- W2783117537 creator A5077123086 @default.
- W2783117537 date "2018-01-09" @default.
- W2783117537 modified "2023-09-28" @default.
- W2783117537 title "Robust Propensity Score Computation Method based on Machine Learning with Label-corrupted Data" @default.
- W2783117537 cites W1593704843 @default.
- W2783117537 cites W1945743190 @default.
- W2783117537 cites W1999822211 @default.
- W2783117537 cites W2002646960 @default.
- W2783117537 cites W2048470090 @default.
- W2783117537 cites W2107093862 @default.
- W2783117537 cites W2113290770 @default.
- W2783117537 cites W2129092711 @default.
- W2783117537 cites W2150291618 @default.
- W2783117537 cites W2592335154 @default.
- W2783117537 cites W2603419731 @default.
- W2783117537 cites W2950803028 @default.
- W2783117537 cites W2962876041 @default.
- W2783117537 cites W3102476541 @default.
- W2783117537 doi "https://doi.org/10.48550/arxiv.1801.03132" @default.
- W2783117537 hasPublicationYear "2018" @default.
- W2783117537 type Work @default.
- W2783117537 sameAs 2783117537 @default.
- W2783117537 citedByCount "2" @default.
- W2783117537 countsByYear W27831175372019 @default.
- W2783117537 countsByYear W27831175372020 @default.
- W2783117537 crossrefType "posted-content" @default.
- W2783117537 hasAuthorship W2783117537A5013038112 @default.
- W2783117537 hasAuthorship W2783117537A5032157321 @default.
- W2783117537 hasAuthorship W2783117537A5074494657 @default.
- W2783117537 hasAuthorship W2783117537A5077123086 @default.
- W2783117537 hasBestOaLocation W27831175371 @default.
- W2783117537 hasConcept C105795698 @default.
- W2783117537 hasConcept C11413529 @default.
- W2783117537 hasConcept C119043178 @default.
- W2783117537 hasConcept C119857082 @default.
- W2783117537 hasConcept C124101348 @default.
- W2783117537 hasConcept C129848803 @default.
- W2783117537 hasConcept C154945302 @default.
- W2783117537 hasConcept C17923572 @default.
- W2783117537 hasConcept C185592680 @default.
- W2783117537 hasConcept C198531522 @default.
- W2783117537 hasConcept C33923547 @default.
- W2783117537 hasConcept C41008148 @default.
- W2783117537 hasConcept C43617362 @default.
- W2783117537 hasConcept C45374587 @default.
- W2783117537 hasConcept C73555534 @default.
- W2783117537 hasConceptScore W2783117537C105795698 @default.
- W2783117537 hasConceptScore W2783117537C11413529 @default.
- W2783117537 hasConceptScore W2783117537C119043178 @default.
- W2783117537 hasConceptScore W2783117537C119857082 @default.
- W2783117537 hasConceptScore W2783117537C124101348 @default.
- W2783117537 hasConceptScore W2783117537C129848803 @default.
- W2783117537 hasConceptScore W2783117537C154945302 @default.
- W2783117537 hasConceptScore W2783117537C17923572 @default.
- W2783117537 hasConceptScore W2783117537C185592680 @default.
- W2783117537 hasConceptScore W2783117537C198531522 @default.
- W2783117537 hasConceptScore W2783117537C33923547 @default.
- W2783117537 hasConceptScore W2783117537C41008148 @default.
- W2783117537 hasConceptScore W2783117537C43617362 @default.
- W2783117537 hasConceptScore W2783117537C45374587 @default.
- W2783117537 hasConceptScore W2783117537C73555534 @default.
- W2783117537 hasLocation W27831175371 @default.
- W2783117537 hasOpenAccess W2783117537 @default.
- W2783117537 hasPrimaryLocation W27831175371 @default.
- W2783117537 hasRelatedWork W1595548540 @default.
- W2783117537 hasRelatedWork W2024788963 @default.
- W2783117537 hasRelatedWork W2309645700 @default.
- W2783117537 hasRelatedWork W247165905 @default.
- W2783117537 hasRelatedWork W2609185034 @default.
- W2783117537 hasRelatedWork W2745636525 @default.
- W2783117537 hasRelatedWork W2760941800 @default.
- W2783117537 hasRelatedWork W2963884280 @default.
- W2783117537 hasRelatedWork W2982310582 @default.
- W2783117537 hasRelatedWork W3183461676 @default.
- W2783117537 isParatext "false" @default.
- W2783117537 isRetracted "false" @default.
- W2783117537 magId "2783117537" @default.
- W2783117537 workType "article" @default.