Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783122809> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2783122809 abstract "Many natural language processing tasks depend on the quality of word representations in order to achieve good results. To build good word vectors for Arabic sentiment analysis there are various factors to consider, such as the corpus choice, text preprocessing, and the choice of the training model. In this paper, we demonstrate how to achieve better sentiment analysis results by building sentiment-specific embeddings trained using the unsupervised fastText tool for both CBOW and skip-gram models. The results show that fastText embedding models are a valuable alternative to recover semantic and syntactic information of standard Arabic as well as a dialectal language. Indeed, fastText is more relevant to morphologically rich languages such as Arabic language. In order to further validate the effectiveness of the resulting word embeddings, we implemented polarity sentiment classifiers and compared their performance to 2 similar models reported in the literature on three different datasets. The performance evaluation results confirm that our approach outperforms counterpart ones on relevant datasets with an improvement margin of up to 5% using F1-score." @default.
- W2783122809 created "2018-01-26" @default.
- W2783122809 creator A5026973073 @default.
- W2783122809 creator A5069884464 @default.
- W2783122809 date "2017-12-01" @default.
- W2783122809 modified "2023-10-14" @default.
- W2783122809 title "Improving Arabic sentiment analysis with sentiment-specific embeddings" @default.
- W2783122809 cites W2043287290 @default.
- W2783122809 cites W2057854333 @default.
- W2783122809 cites W2250539671 @default.
- W2783122809 cites W2494614653 @default.
- W2783122809 cites W2584934697 @default.
- W2783122809 cites W2625475744 @default.
- W2783122809 cites W2626867234 @default.
- W2783122809 cites W766476750 @default.
- W2783122809 doi "https://doi.org/10.1109/bigdata.2017.8258460" @default.
- W2783122809 hasPublicationYear "2017" @default.
- W2783122809 type Work @default.
- W2783122809 sameAs 2783122809 @default.
- W2783122809 citedByCount "21" @default.
- W2783122809 countsByYear W27831228092018 @default.
- W2783122809 countsByYear W27831228092019 @default.
- W2783122809 countsByYear W27831228092020 @default.
- W2783122809 countsByYear W27831228092021 @default.
- W2783122809 countsByYear W27831228092022 @default.
- W2783122809 countsByYear W27831228092023 @default.
- W2783122809 crossrefType "proceedings-article" @default.
- W2783122809 hasAuthorship W2783122809A5026973073 @default.
- W2783122809 hasAuthorship W2783122809A5069884464 @default.
- W2783122809 hasConcept C119857082 @default.
- W2783122809 hasConcept C138885662 @default.
- W2783122809 hasConcept C154945302 @default.
- W2783122809 hasConcept C204321447 @default.
- W2783122809 hasConcept C2777462759 @default.
- W2783122809 hasConcept C34736171 @default.
- W2783122809 hasConcept C41008148 @default.
- W2783122809 hasConcept C41608201 @default.
- W2783122809 hasConcept C41895202 @default.
- W2783122809 hasConcept C66402592 @default.
- W2783122809 hasConcept C774472 @default.
- W2783122809 hasConcept C90805587 @default.
- W2783122809 hasConcept C96455323 @default.
- W2783122809 hasConceptScore W2783122809C119857082 @default.
- W2783122809 hasConceptScore W2783122809C138885662 @default.
- W2783122809 hasConceptScore W2783122809C154945302 @default.
- W2783122809 hasConceptScore W2783122809C204321447 @default.
- W2783122809 hasConceptScore W2783122809C2777462759 @default.
- W2783122809 hasConceptScore W2783122809C34736171 @default.
- W2783122809 hasConceptScore W2783122809C41008148 @default.
- W2783122809 hasConceptScore W2783122809C41608201 @default.
- W2783122809 hasConceptScore W2783122809C41895202 @default.
- W2783122809 hasConceptScore W2783122809C66402592 @default.
- W2783122809 hasConceptScore W2783122809C774472 @default.
- W2783122809 hasConceptScore W2783122809C90805587 @default.
- W2783122809 hasConceptScore W2783122809C96455323 @default.
- W2783122809 hasLocation W27831228091 @default.
- W2783122809 hasOpenAccess W2783122809 @default.
- W2783122809 hasPrimaryLocation W27831228091 @default.
- W2783122809 hasRelatedWork W2335882425 @default.
- W2783122809 hasRelatedWork W2338093180 @default.
- W2783122809 hasRelatedWork W2745862583 @default.
- W2783122809 hasRelatedWork W3086845375 @default.
- W2783122809 hasRelatedWork W3107679445 @default.
- W2783122809 hasRelatedWork W3147405789 @default.
- W2783122809 hasRelatedWork W3158961393 @default.
- W2783122809 hasRelatedWork W4301311969 @default.
- W2783122809 hasRelatedWork W4323981018 @default.
- W2783122809 hasRelatedWork W4361018082 @default.
- W2783122809 isParatext "false" @default.
- W2783122809 isRetracted "false" @default.
- W2783122809 magId "2783122809" @default.
- W2783122809 workType "article" @default.