Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783132069> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2783132069 abstract "Support Vector Machines (SVMs) are well-known tools for the task of big data text classification. This research studies the effects of omitting non-polar training samples on the performance of a SVM-based binary text classifier. The classifier operates on a large corpus of Amazon product review text bodies, sampled from various product categories and predicts the polarity of reviews. Our results show that training on a smaller, more concise training set of only 1 and 5-star reviews offers similar performance to training on a much larger dataset that includes 1, 2, 4, and 5-star reviews, without sacrificing much in terms of precision or recall. These results hold true using both count-based and TF-IDF vectorization methodologies. The technique of training on the poles is demonstrated to offer efficient means to build a high-performing SVM-based review sentiment polarity classifier, especially in cases where labeled data may not be readily available and training time is constrained." @default.
- W2783132069 created "2018-01-26" @default.
- W2783132069 creator A5025617304 @default.
- W2783132069 creator A5085923839 @default.
- W2783132069 date "2017-12-01" @default.
- W2783132069 modified "2023-09-26" @default.
- W2783132069 title "Training on the poles for review sentiment polarity classification" @default.
- W2783132069 cites W1572786359 @default.
- W2783132069 cites W1775434803 @default.
- W2783132069 cites W1795484492 @default.
- W2783132069 cites W1964976907 @default.
- W2783132069 cites W2027731328 @default.
- W2783132069 cites W2029080598 @default.
- W2783132069 cites W2050096199 @default.
- W2783132069 cites W2061873838 @default.
- W2783132069 cites W2118978333 @default.
- W2783132069 cites W2134305421 @default.
- W2783132069 cites W2189187207 @default.
- W2783132069 cites W2244501064 @default.
- W2783132069 cites W2469279958 @default.
- W2783132069 cites W2593329852 @default.
- W2783132069 cites W3124946654 @default.
- W2783132069 doi "https://doi.org/10.1109/bigdata.2017.8258401" @default.
- W2783132069 hasPublicationYear "2017" @default.
- W2783132069 type Work @default.
- W2783132069 sameAs 2783132069 @default.
- W2783132069 citedByCount "1" @default.
- W2783132069 countsByYear W27831320692021 @default.
- W2783132069 crossrefType "proceedings-article" @default.
- W2783132069 hasAuthorship W2783132069A5025617304 @default.
- W2783132069 hasAuthorship W2783132069A5085923839 @default.
- W2783132069 hasConcept C100660578 @default.
- W2783132069 hasConcept C119857082 @default.
- W2783132069 hasConcept C12267149 @default.
- W2783132069 hasConcept C138885662 @default.
- W2783132069 hasConcept C153180895 @default.
- W2783132069 hasConcept C154945302 @default.
- W2783132069 hasConcept C204321447 @default.
- W2783132069 hasConcept C41008148 @default.
- W2783132069 hasConcept C41895202 @default.
- W2783132069 hasConcept C51632099 @default.
- W2783132069 hasConcept C66402592 @default.
- W2783132069 hasConcept C66905080 @default.
- W2783132069 hasConcept C95623464 @default.
- W2783132069 hasConceptScore W2783132069C100660578 @default.
- W2783132069 hasConceptScore W2783132069C119857082 @default.
- W2783132069 hasConceptScore W2783132069C12267149 @default.
- W2783132069 hasConceptScore W2783132069C138885662 @default.
- W2783132069 hasConceptScore W2783132069C153180895 @default.
- W2783132069 hasConceptScore W2783132069C154945302 @default.
- W2783132069 hasConceptScore W2783132069C204321447 @default.
- W2783132069 hasConceptScore W2783132069C41008148 @default.
- W2783132069 hasConceptScore W2783132069C41895202 @default.
- W2783132069 hasConceptScore W2783132069C51632099 @default.
- W2783132069 hasConceptScore W2783132069C66402592 @default.
- W2783132069 hasConceptScore W2783132069C66905080 @default.
- W2783132069 hasConceptScore W2783132069C95623464 @default.
- W2783132069 hasLocation W27831320691 @default.
- W2783132069 hasOpenAccess W2783132069 @default.
- W2783132069 hasPrimaryLocation W27831320691 @default.
- W2783132069 hasRelatedWork W10648265 @default.
- W2783132069 hasRelatedWork W1984676746 @default.
- W2783132069 hasRelatedWork W2007646767 @default.
- W2783132069 hasRelatedWork W2067905521 @default.
- W2783132069 hasRelatedWork W2129910523 @default.
- W2783132069 hasRelatedWork W2203284163 @default.
- W2783132069 hasRelatedWork W2460286025 @default.
- W2783132069 hasRelatedWork W2557455107 @default.
- W2783132069 hasRelatedWork W2609916062 @default.
- W2783132069 hasRelatedWork W2761067644 @default.
- W2783132069 hasRelatedWork W2767225413 @default.
- W2783132069 hasRelatedWork W2808963360 @default.
- W2783132069 hasRelatedWork W2912615580 @default.
- W2783132069 hasRelatedWork W2965788241 @default.
- W2783132069 hasRelatedWork W3006262906 @default.
- W2783132069 hasRelatedWork W3091819311 @default.
- W2783132069 hasRelatedWork W3137135653 @default.
- W2783132069 hasRelatedWork W3141951428 @default.
- W2783132069 hasRelatedWork W3158797054 @default.
- W2783132069 hasRelatedWork W2325427769 @default.
- W2783132069 isParatext "false" @default.
- W2783132069 isRetracted "false" @default.
- W2783132069 magId "2783132069" @default.
- W2783132069 workType "article" @default.