Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783135961> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2783135961 abstract "With the birth of new technologies which can harness data associated with education, the field of Educational Data Mining (EDM) has bloomed. EDM is a research area which uses data mining techniques, machine learning algorithms and statistical techniques to understand how students learn, predict students' academic performance and how a student's learning can be improved. This paper conducts extensive review of the literature on the use of EDM for analyzing performance of student." @default.
- W2783135961 created "2018-01-26" @default.
- W2783135961 creator A5000828581 @default.
- W2783135961 creator A5061819949 @default.
- W2783135961 date "2017-10-01" @default.
- W2783135961 modified "2023-10-16" @default.
- W2783135961 title "Analyzing performance of students by using data mining techniques a literature survey" @default.
- W2783135961 cites W1966165526 @default.
- W2783135961 cites W1983553433 @default.
- W2783135961 cites W2027711578 @default.
- W2783135961 cites W2041304617 @default.
- W2783135961 cites W2049868504 @default.
- W2783135961 cites W2133990480 @default.
- W2783135961 cites W2543707867 @default.
- W2783135961 doi "https://doi.org/10.1109/upcon.2017.8251035" @default.
- W2783135961 hasPublicationYear "2017" @default.
- W2783135961 type Work @default.
- W2783135961 sameAs 2783135961 @default.
- W2783135961 citedByCount "16" @default.
- W2783135961 countsByYear W27831359612015 @default.
- W2783135961 countsByYear W27831359612018 @default.
- W2783135961 countsByYear W27831359612019 @default.
- W2783135961 countsByYear W27831359612020 @default.
- W2783135961 countsByYear W27831359612021 @default.
- W2783135961 countsByYear W27831359612022 @default.
- W2783135961 countsByYear W27831359612023 @default.
- W2783135961 crossrefType "proceedings-article" @default.
- W2783135961 hasAuthorship W2783135961A5000828581 @default.
- W2783135961 hasAuthorship W2783135961A5061819949 @default.
- W2783135961 hasConcept C119857082 @default.
- W2783135961 hasConcept C124101348 @default.
- W2783135961 hasConcept C145420912 @default.
- W2783135961 hasConcept C154945302 @default.
- W2783135961 hasConcept C202444582 @default.
- W2783135961 hasConcept C2522767166 @default.
- W2783135961 hasConcept C2777598771 @default.
- W2783135961 hasConcept C33923547 @default.
- W2783135961 hasConcept C41008148 @default.
- W2783135961 hasConcept C9652623 @default.
- W2783135961 hasConceptScore W2783135961C119857082 @default.
- W2783135961 hasConceptScore W2783135961C124101348 @default.
- W2783135961 hasConceptScore W2783135961C145420912 @default.
- W2783135961 hasConceptScore W2783135961C154945302 @default.
- W2783135961 hasConceptScore W2783135961C202444582 @default.
- W2783135961 hasConceptScore W2783135961C2522767166 @default.
- W2783135961 hasConceptScore W2783135961C2777598771 @default.
- W2783135961 hasConceptScore W2783135961C33923547 @default.
- W2783135961 hasConceptScore W2783135961C41008148 @default.
- W2783135961 hasConceptScore W2783135961C9652623 @default.
- W2783135961 hasLocation W27831359611 @default.
- W2783135961 hasOpenAccess W2783135961 @default.
- W2783135961 hasPrimaryLocation W27831359611 @default.
- W2783135961 hasRelatedWork W2521491036 @default.
- W2783135961 hasRelatedWork W2809511035 @default.
- W2783135961 hasRelatedWork W2961085424 @default.
- W2783135961 hasRelatedWork W3107704721 @default.
- W2783135961 hasRelatedWork W3137268104 @default.
- W2783135961 hasRelatedWork W3208090188 @default.
- W2783135961 hasRelatedWork W4285334908 @default.
- W2783135961 hasRelatedWork W4306674287 @default.
- W2783135961 hasRelatedWork W4384931383 @default.
- W2783135961 hasRelatedWork W4224009465 @default.
- W2783135961 isParatext "false" @default.
- W2783135961 isRetracted "false" @default.
- W2783135961 magId "2783135961" @default.
- W2783135961 workType "article" @default.