Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783139188> ?p ?o ?g. }
- W2783139188 abstract "Multiplicative noise removal is always a hard problem in fundamental image processing task. Many methods are proposed for the multiplicative noise removal by using different denoiser prior in variational framework. Among the image prior, total variation (TV) are first proposed and then many other regularization such as PM, TGV, nonlocal and many other priors are also proposed for enhance the denoising ability. Although using the priors can get good performance, the models are hard to be resolved with sophisticated priors. A new model based on the deep CNN denoiser prior for removing multiplicative noise is proposed in this paper. The proposed energy function is effectively calculated via several sub-optimal questions by split bregman method and alternative minimization is used for the solution. The proposed method needn't deduce the sophisticated formula and can achieve good performance. From the experiments, we can see that our method achieved good results." @default.
- W2783139188 created "2018-01-26" @default.
- W2783139188 creator A5056058837 @default.
- W2783139188 creator A5057845734 @default.
- W2783139188 creator A5081897709 @default.
- W2783139188 creator A5089783869 @default.
- W2783139188 date "2017-11-01" @default.
- W2783139188 modified "2023-09-26" @default.
- W2783139188 title "Multiplicative noise removal using deep CNN denoiser prior" @default.
- W2783139188 cites W112727521 @default.
- W2783139188 cites W1665710069 @default.
- W2783139188 cites W1998339281 @default.
- W2783139188 cites W2011124634 @default.
- W2783139188 cites W2011516671 @default.
- W2783139188 cites W2013388817 @default.
- W2783139188 cites W2029931449 @default.
- W2783139188 cites W2045573972 @default.
- W2783139188 cites W2054867636 @default.
- W2783139188 cites W2056370875 @default.
- W2783139188 cites W2069766163 @default.
- W2783139188 cites W2103559027 @default.
- W2783139188 cites W2108179490 @default.
- W2783139188 cites W2125852763 @default.
- W2783139188 cites W2135036909 @default.
- W2783139188 cites W2150134853 @default.
- W2783139188 cites W2214394684 @default.
- W2783139188 cites W2258573099 @default.
- W2783139188 cites W2294876837 @default.
- W2783139188 cites W2342849074 @default.
- W2783139188 cites W2487183298 @default.
- W2783139188 cites W2584526915 @default.
- W2783139188 cites W260753247 @default.
- W2783139188 cites W2613155248 @default.
- W2783139188 cites W2284241803 @default.
- W2783139188 doi "https://doi.org/10.1109/ispacs.2017.8265635" @default.
- W2783139188 hasPublicationYear "2017" @default.
- W2783139188 type Work @default.
- W2783139188 sameAs 2783139188 @default.
- W2783139188 citedByCount "4" @default.
- W2783139188 countsByYear W27831391882018 @default.
- W2783139188 countsByYear W27831391882019 @default.
- W2783139188 countsByYear W27831391882022 @default.
- W2783139188 crossrefType "proceedings-article" @default.
- W2783139188 hasAuthorship W2783139188A5056058837 @default.
- W2783139188 hasAuthorship W2783139188A5057845734 @default.
- W2783139188 hasAuthorship W2783139188A5081897709 @default.
- W2783139188 hasAuthorship W2783139188A5089783869 @default.
- W2783139188 hasConcept C106430172 @default.
- W2783139188 hasConcept C107673813 @default.
- W2783139188 hasConcept C11413529 @default.
- W2783139188 hasConcept C115961682 @default.
- W2783139188 hasConcept C126255220 @default.
- W2783139188 hasConcept C131021393 @default.
- W2783139188 hasConcept C13412647 @default.
- W2783139188 hasConcept C134306372 @default.
- W2783139188 hasConcept C147764199 @default.
- W2783139188 hasConcept C154945302 @default.
- W2783139188 hasConcept C163294075 @default.
- W2783139188 hasConcept C177769412 @default.
- W2783139188 hasConcept C18015164 @default.
- W2783139188 hasConcept C2776135515 @default.
- W2783139188 hasConcept C2983327147 @default.
- W2783139188 hasConcept C33923547 @default.
- W2783139188 hasConcept C41008148 @default.
- W2783139188 hasConcept C42747912 @default.
- W2783139188 hasConcept C84462506 @default.
- W2783139188 hasConcept C9390403 @default.
- W2783139188 hasConcept C9417928 @default.
- W2783139188 hasConcept C99498987 @default.
- W2783139188 hasConceptScore W2783139188C106430172 @default.
- W2783139188 hasConceptScore W2783139188C107673813 @default.
- W2783139188 hasConceptScore W2783139188C11413529 @default.
- W2783139188 hasConceptScore W2783139188C115961682 @default.
- W2783139188 hasConceptScore W2783139188C126255220 @default.
- W2783139188 hasConceptScore W2783139188C131021393 @default.
- W2783139188 hasConceptScore W2783139188C13412647 @default.
- W2783139188 hasConceptScore W2783139188C134306372 @default.
- W2783139188 hasConceptScore W2783139188C147764199 @default.
- W2783139188 hasConceptScore W2783139188C154945302 @default.
- W2783139188 hasConceptScore W2783139188C163294075 @default.
- W2783139188 hasConceptScore W2783139188C177769412 @default.
- W2783139188 hasConceptScore W2783139188C18015164 @default.
- W2783139188 hasConceptScore W2783139188C2776135515 @default.
- W2783139188 hasConceptScore W2783139188C2983327147 @default.
- W2783139188 hasConceptScore W2783139188C33923547 @default.
- W2783139188 hasConceptScore W2783139188C41008148 @default.
- W2783139188 hasConceptScore W2783139188C42747912 @default.
- W2783139188 hasConceptScore W2783139188C84462506 @default.
- W2783139188 hasConceptScore W2783139188C9390403 @default.
- W2783139188 hasConceptScore W2783139188C9417928 @default.
- W2783139188 hasConceptScore W2783139188C99498987 @default.
- W2783139188 hasLocation W27831391881 @default.
- W2783139188 hasOpenAccess W2783139188 @default.
- W2783139188 hasPrimaryLocation W27831391881 @default.
- W2783139188 hasRelatedWork W1652574860 @default.
- W2783139188 hasRelatedWork W2008425277 @default.
- W2783139188 hasRelatedWork W2085803788 @default.
- W2783139188 hasRelatedWork W2087602956 @default.
- W2783139188 hasRelatedWork W2157600659 @default.
- W2783139188 hasRelatedWork W2205541456 @default.