Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783141051> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2783141051 abstract "Mining frequent itemsets from transactional data streams has been vastly studied in literature. The existing algorithms mine frequent itemsets within the stream's constrained environment of limited time and memory. However, none of them are capable of handling varying inter-arrival rates of streams. Moreover, these algorithms are not capable of giving mining results instantaneously, even with compromised accuracy if required, and improve the accuracy with increase in time allowance. These two properties characterize an anytime algorithm. In this paper, we propose AnyFI, which is the first anytime frequent itemset mining algorithm for data streams. We also propose a novel data structure, BFI-forest, which is capable of handling transactions with varying inter-arrival rate. AnyFI maintains itemsets in BFI-forest in such a way that it can give a mining result almost immediately when time allowance to mine is very less and can refine the results for better accuracy with increase in time allowance. Our experimental results show that AnyFI can handle high stream speeds upto 60,000 transactions per second (tps) with recall close to 100%." @default.
- W2783141051 created "2018-01-26" @default.
- W2783141051 creator A5012040625 @default.
- W2783141051 creator A5027120172 @default.
- W2783141051 creator A5044760764 @default.
- W2783141051 creator A5053105431 @default.
- W2783141051 date "2017-12-01" @default.
- W2783141051 modified "2023-09-27" @default.
- W2783141051 title "AnyFI: An anytime frequent itemset mining algorithm for data streams" @default.
- W2783141051 cites W139562302 @default.
- W2783141051 cites W1964305655 @default.
- W2783141051 cites W1965028235 @default.
- W2783141051 cites W1972053133 @default.
- W2783141051 cites W1975852288 @default.
- W2783141051 cites W2006683254 @default.
- W2783141051 cites W2011062180 @default.
- W2783141051 cites W2014832886 @default.
- W2783141051 cites W2079978553 @default.
- W2783141051 cites W2096761455 @default.
- W2783141051 cites W2099404336 @default.
- W2783141051 cites W2115482638 @default.
- W2783141051 cites W2166559705 @default.
- W2783141051 cites W45679362 @default.
- W2783141051 doi "https://doi.org/10.1109/bigdata.2017.8258013" @default.
- W2783141051 hasPublicationYear "2017" @default.
- W2783141051 type Work @default.
- W2783141051 sameAs 2783141051 @default.
- W2783141051 citedByCount "5" @default.
- W2783141051 countsByYear W27831410512018 @default.
- W2783141051 countsByYear W27831410512021 @default.
- W2783141051 countsByYear W27831410512022 @default.
- W2783141051 crossrefType "proceedings-article" @default.
- W2783141051 hasAuthorship W2783141051A5012040625 @default.
- W2783141051 hasAuthorship W2783141051A5027120172 @default.
- W2783141051 hasAuthorship W2783141051A5044760764 @default.
- W2783141051 hasAuthorship W2783141051A5053105431 @default.
- W2783141051 hasConcept C11413529 @default.
- W2783141051 hasConcept C120314980 @default.
- W2783141051 hasConcept C124101348 @default.
- W2783141051 hasConcept C127413603 @default.
- W2783141051 hasConcept C154945302 @default.
- W2783141051 hasConcept C2778484313 @default.
- W2783141051 hasConcept C2779268580 @default.
- W2783141051 hasConcept C2989134064 @default.
- W2783141051 hasConcept C31258907 @default.
- W2783141051 hasConcept C41008148 @default.
- W2783141051 hasConcept C42090638 @default.
- W2783141051 hasConcept C76155785 @default.
- W2783141051 hasConcept C78519656 @default.
- W2783141051 hasConcept C81669768 @default.
- W2783141051 hasConcept C89198739 @default.
- W2783141051 hasConceptScore W2783141051C11413529 @default.
- W2783141051 hasConceptScore W2783141051C120314980 @default.
- W2783141051 hasConceptScore W2783141051C124101348 @default.
- W2783141051 hasConceptScore W2783141051C127413603 @default.
- W2783141051 hasConceptScore W2783141051C154945302 @default.
- W2783141051 hasConceptScore W2783141051C2778484313 @default.
- W2783141051 hasConceptScore W2783141051C2779268580 @default.
- W2783141051 hasConceptScore W2783141051C2989134064 @default.
- W2783141051 hasConceptScore W2783141051C31258907 @default.
- W2783141051 hasConceptScore W2783141051C41008148 @default.
- W2783141051 hasConceptScore W2783141051C42090638 @default.
- W2783141051 hasConceptScore W2783141051C76155785 @default.
- W2783141051 hasConceptScore W2783141051C78519656 @default.
- W2783141051 hasConceptScore W2783141051C81669768 @default.
- W2783141051 hasConceptScore W2783141051C89198739 @default.
- W2783141051 hasLocation W27831410511 @default.
- W2783141051 hasOpenAccess W2783141051 @default.
- W2783141051 hasPrimaryLocation W27831410511 @default.
- W2783141051 hasRelatedWork W1582424504 @default.
- W2783141051 hasRelatedWork W2039848804 @default.
- W2783141051 hasRelatedWork W2069446265 @default.
- W2783141051 hasRelatedWork W2313030483 @default.
- W2783141051 hasRelatedWork W2319935728 @default.
- W2783141051 hasRelatedWork W2350940880 @default.
- W2783141051 hasRelatedWork W2354236636 @default.
- W2783141051 hasRelatedWork W2359425399 @default.
- W2783141051 hasRelatedWork W2380746617 @default.
- W2783141051 hasRelatedWork W2943162598 @default.
- W2783141051 isParatext "false" @default.
- W2783141051 isRetracted "false" @default.
- W2783141051 magId "2783141051" @default.
- W2783141051 workType "article" @default.