Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783148479> ?p ?o ?g. }
- W2783148479 endingPage "418" @default.
- W2783148479 startingPage "407" @default.
- W2783148479 abstract "Data quality is increasingly recognized as one of the most important confounding factors in brain imaging research. It is particularly important for studies of brain development, where age is systematically related to in-scanner motion and data quality. Prior work has demonstrated that in-scanner head motion biases estimates of structural neuroimaging measures. However, objective measures of data quality are not available for most structural brain images. Here we sought to identify quantitative measures of data quality for T1-weighted volumes, describe how these measures relate to cortical thickness, and delineate how this in turn may bias inference regarding associations with age in youth. Three highly-trained raters provided manual ratings of 1840 raw T1-weighted volumes. These images included a training set of 1065 images from Philadelphia Neurodevelopmental Cohort (PNC), a test set of 533 images from the PNC, as well as an external test set of 242 adults acquired on a different scanner. Manual ratings were compared to automated quality measures provided by the Preprocessed Connectomes Project's Quality Assurance Protocol (QAP), as well as FreeSurfer's Euler number, which summarizes the topological complexity of the reconstructed cortical surface. Results revealed that the Euler number was consistently correlated with manual ratings across samples. Furthermore, the Euler number could be used to identify images scored “unusable” by human raters with a high degree of accuracy (AUC: 0.98–0.99), and out-performed proxy measures from functional timeseries acquired in the same scanning session. The Euler number also was significantly related to cortical thickness in a regionally heterogeneous pattern that was consistent across datasets and replicated prior results. Finally, data quality both inflated and obscured associations with age during adolescence. Taken together, these results indicate that reliable measures of data quality can be automatically derived from T1-weighted volumes, and that failing to control for data quality can systematically bias the results of studies of brain maturation." @default.
- W2783148479 created "2018-01-26" @default.
- W2783148479 creator A5009635561 @default.
- W2783148479 creator A5009654644 @default.
- W2783148479 creator A5011451324 @default.
- W2783148479 creator A5015338409 @default.
- W2783148479 creator A5018607314 @default.
- W2783148479 creator A5028402542 @default.
- W2783148479 creator A5032090056 @default.
- W2783148479 creator A5037974362 @default.
- W2783148479 creator A5039906500 @default.
- W2783148479 creator A5041082600 @default.
- W2783148479 creator A5043413597 @default.
- W2783148479 creator A5043997958 @default.
- W2783148479 creator A5058433895 @default.
- W2783148479 creator A5060417820 @default.
- W2783148479 creator A5060688654 @default.
- W2783148479 creator A5064990754 @default.
- W2783148479 creator A5065821998 @default.
- W2783148479 creator A5081195717 @default.
- W2783148479 creator A5084392961 @default.
- W2783148479 creator A5089507178 @default.
- W2783148479 date "2018-04-01" @default.
- W2783148479 modified "2023-10-18" @default.
- W2783148479 title "Quantitative assessment of structural image quality" @default.
- W2783148479 cites W1812490466 @default.
- W2783148479 cites W1967660841 @default.
- W2783148479 cites W1976876708 @default.
- W2783148479 cites W1980527160 @default.
- W2783148479 cites W1980553836 @default.
- W2783148479 cites W1983302342 @default.
- W2783148479 cites W1984111197 @default.
- W2783148479 cites W1989364786 @default.
- W2783148479 cites W1990134753 @default.
- W2783148479 cites W1992338409 @default.
- W2783148479 cites W1999720072 @default.
- W2783148479 cites W2005238835 @default.
- W2783148479 cites W2013859768 @default.
- W2783148479 cites W2030309005 @default.
- W2783148479 cites W2030561475 @default.
- W2783148479 cites W2033200260 @default.
- W2783148479 cites W2033865693 @default.
- W2783148479 cites W2037689983 @default.
- W2783148479 cites W2040050577 @default.
- W2783148479 cites W2048857243 @default.
- W2783148479 cites W2050640418 @default.
- W2783148479 cites W2051461858 @default.
- W2783148479 cites W2053465090 @default.
- W2783148479 cites W2055132316 @default.
- W2783148479 cites W2069088601 @default.
- W2783148479 cites W2075851722 @default.
- W2783148479 cites W2083837365 @default.
- W2783148479 cites W2088667195 @default.
- W2783148479 cites W2095621691 @default.
- W2783148479 cites W2100189007 @default.
- W2783148479 cites W2101135654 @default.
- W2783148479 cites W2104434712 @default.
- W2783148479 cites W2107499714 @default.
- W2783148479 cites W2110208125 @default.
- W2783148479 cites W2120731293 @default.
- W2783148479 cites W2123523993 @default.
- W2783148479 cites W2132175842 @default.
- W2783148479 cites W2135988234 @default.
- W2783148479 cites W2136573752 @default.
- W2783148479 cites W2146473511 @default.
- W2783148479 cites W2148519294 @default.
- W2783148479 cites W2151721316 @default.
- W2783148479 cites W2152292563 @default.
- W2783148479 cites W2187321176 @default.
- W2783148479 cites W2211147350 @default.
- W2783148479 cites W2310662295 @default.
- W2783148479 cites W2328176404 @default.
- W2783148479 cites W2337323496 @default.
- W2783148479 cites W2347013431 @default.
- W2783148479 cites W2509256556 @default.
- W2783148479 cites W2521566269 @default.
- W2783148479 cites W2555442792 @default.
- W2783148479 cites W2594949498 @default.
- W2783148479 cites W2597348720 @default.
- W2783148479 cites W2605712228 @default.
- W2783148479 cites W4235770099 @default.
- W2783148479 cites W4241074797 @default.
- W2783148479 cites W4295750005 @default.
- W2783148479 doi "https://doi.org/10.1016/j.neuroimage.2017.12.059" @default.
- W2783148479 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5856621" @default.
- W2783148479 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29278774" @default.
- W2783148479 hasPublicationYear "2018" @default.
- W2783148479 type Work @default.
- W2783148479 sameAs 2783148479 @default.
- W2783148479 citedByCount "258" @default.
- W2783148479 countsByYear W27831484792018 @default.
- W2783148479 countsByYear W27831484792019 @default.
- W2783148479 countsByYear W27831484792020 @default.
- W2783148479 countsByYear W27831484792021 @default.
- W2783148479 countsByYear W27831484792022 @default.
- W2783148479 countsByYear W27831484792023 @default.
- W2783148479 crossrefType "journal-article" @default.
- W2783148479 hasAuthorship W2783148479A5009635561 @default.