Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783153361> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W2783153361 abstract "Most of the data in real world are high dimensional. These high dimensional data are used in many practical applications including medical image processing, geographical information system, and pattern recognition. Nearest Neighbor search is one of the important methods for finding data matching with the query. As these data are very large, it is very complex to store and use for searching. Multiple dimensions are used for getting the accurate result. Several methods are available for searching in high dimension but most of the methods use the concept of dimension reduction. Available exact Nearest Neighbor search algorithms are not efficient in search time, storage space, or find it efficient only for small number of dimensions. Such type of problems in high dimension data is called curse of dimensionality. The elimination of unimportant dimension is not always appropriate for finding the exact search results like Nearest Neighbor search for health monitoring, fault detection or intrusion detection etc. This is due to risk of elimination of important data which might be useful for search. High dimensional data require efficient search result as well as efficiency with respect to time and space. Outlier removal is also a type of elimination from data. In this paper, we propose an algorithm for Nearest Neighbor search in high dimensions for solving the problem of uneven and rigid clustering by removing outliers without losing data. This is done by clustering of data considering all dimensions and using outlier data for search as well as smoothly clustered data. Proposed algorithm uses advantage of K-mean as well as Fuzzy C-Mean (FCM) algorithms for clustering. Indexing of cluster centroids and outlier membership is done for better search results on time. This algorithm finds the exact search result in less time as well as generates better data clusters. The algorithm is implemented in MATLAB and JAVA. Result shows that proposed algorithm generates better clusters, considers useful data of outliers, and produces Nearest Neighbor search in less time and accurate as compared with K-mean clustering." @default.
- W2783153361 created "2018-01-26" @default.
- W2783153361 creator A5004300659 @default.
- W2783153361 creator A5056242403 @default.
- W2783153361 date "2017-07-01" @default.
- W2783153361 modified "2023-09-29" @default.
- W2783153361 title "High dimensional nearest neighbor search considering outliers based on fuzzy membership" @default.
- W2783153361 cites W139098497 @default.
- W2783153361 cites W1530232915 @default.
- W2783153361 cites W1977496278 @default.
- W2783153361 cites W2061491086 @default.
- W2783153361 cites W2071826364 @default.
- W2783153361 cites W2084360845 @default.
- W2783153361 cites W2095897464 @default.
- W2783153361 cites W2106642566 @default.
- W2783153361 cites W2123090446 @default.
- W2783153361 cites W2131687179 @default.
- W2783153361 cites W2146646206 @default.
- W2783153361 cites W2148148676 @default.
- W2783153361 cites W2148633987 @default.
- W2783153361 cites W2155502235 @default.
- W2783153361 cites W2169459491 @default.
- W2783153361 doi "https://doi.org/10.1109/sai.2017.8252127" @default.
- W2783153361 hasPublicationYear "2017" @default.
- W2783153361 type Work @default.
- W2783153361 sameAs 2783153361 @default.
- W2783153361 citedByCount "4" @default.
- W2783153361 countsByYear W27831533612018 @default.
- W2783153361 countsByYear W27831533612019 @default.
- W2783153361 countsByYear W27831533612021 @default.
- W2783153361 crossrefType "proceedings-article" @default.
- W2783153361 hasAuthorship W2783153361A5004300659 @default.
- W2783153361 hasAuthorship W2783153361A5056242403 @default.
- W2783153361 hasConcept C102164700 @default.
- W2783153361 hasConcept C104047586 @default.
- W2783153361 hasConcept C111030470 @default.
- W2783153361 hasConcept C113238511 @default.
- W2783153361 hasConcept C11413529 @default.
- W2783153361 hasConcept C116738811 @default.
- W2783153361 hasConcept C124101348 @default.
- W2783153361 hasConcept C125583679 @default.
- W2783153361 hasConcept C153180895 @default.
- W2783153361 hasConcept C154945302 @default.
- W2783153361 hasConcept C161986146 @default.
- W2783153361 hasConcept C17212007 @default.
- W2783153361 hasConcept C202444582 @default.
- W2783153361 hasConcept C33676613 @default.
- W2783153361 hasConcept C33923547 @default.
- W2783153361 hasConcept C35525427 @default.
- W2783153361 hasConcept C41008148 @default.
- W2783153361 hasConcept C70518039 @default.
- W2783153361 hasConcept C73555534 @default.
- W2783153361 hasConcept C739882 @default.
- W2783153361 hasConcept C79337645 @default.
- W2783153361 hasConceptScore W2783153361C102164700 @default.
- W2783153361 hasConceptScore W2783153361C104047586 @default.
- W2783153361 hasConceptScore W2783153361C111030470 @default.
- W2783153361 hasConceptScore W2783153361C113238511 @default.
- W2783153361 hasConceptScore W2783153361C11413529 @default.
- W2783153361 hasConceptScore W2783153361C116738811 @default.
- W2783153361 hasConceptScore W2783153361C124101348 @default.
- W2783153361 hasConceptScore W2783153361C125583679 @default.
- W2783153361 hasConceptScore W2783153361C153180895 @default.
- W2783153361 hasConceptScore W2783153361C154945302 @default.
- W2783153361 hasConceptScore W2783153361C161986146 @default.
- W2783153361 hasConceptScore W2783153361C17212007 @default.
- W2783153361 hasConceptScore W2783153361C202444582 @default.
- W2783153361 hasConceptScore W2783153361C33676613 @default.
- W2783153361 hasConceptScore W2783153361C33923547 @default.
- W2783153361 hasConceptScore W2783153361C35525427 @default.
- W2783153361 hasConceptScore W2783153361C41008148 @default.
- W2783153361 hasConceptScore W2783153361C70518039 @default.
- W2783153361 hasConceptScore W2783153361C73555534 @default.
- W2783153361 hasConceptScore W2783153361C739882 @default.
- W2783153361 hasConceptScore W2783153361C79337645 @default.
- W2783153361 hasLocation W27831533611 @default.
- W2783153361 hasOpenAccess W2783153361 @default.
- W2783153361 hasPrimaryLocation W27831533611 @default.
- W2783153361 hasRelatedWork W1529128151 @default.
- W2783153361 hasRelatedWork W1558159560 @default.
- W2783153361 hasRelatedWork W1981914622 @default.
- W2783153361 hasRelatedWork W2000825509 @default.
- W2783153361 hasRelatedWork W2165428595 @default.
- W2783153361 hasRelatedWork W2354127086 @default.
- W2783153361 hasRelatedWork W2381195555 @default.
- W2783153361 hasRelatedWork W2398982980 @default.
- W2783153361 hasRelatedWork W325985789 @default.
- W2783153361 hasRelatedWork W4297079196 @default.
- W2783153361 isParatext "false" @default.
- W2783153361 isRetracted "false" @default.
- W2783153361 magId "2783153361" @default.
- W2783153361 workType "article" @default.