Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783156804> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2783156804 endingPage "4551" @default.
- W2783156804 startingPage "4539" @default.
- W2783156804 abstract "The ongoing increasing traffic in the era of big data yields unprecedented demands in user experience and network capacity expansion. The users of next generation mobile networks (5 G) should be able to use 3GPP, IEEE, and other technologies simultaneously. The integration of multiple radio access technologies (RATs) of licensed or unlicensed bands has been widely deemed as a cost-efficient way to greatly increase the network capacity. In this paper, we propose a smart aggregated RAT access (SARA) strategy with aim of maximizing the long-term network throughput while meeting diverse traffic quality of service (QoS) requirements. We consider the scenario that users with different QoS requirements access to a heterogeneous network with coexisting cellular-WiFi. In order to maximize system throughput while meeting diverse traffic QoS requirements in such a complex and dynamic environment, we exploit multiagent reinforcement learning to perform RAT selection in conjunction with resource allocation for individual user access requests, through sensing dynamic channel states and traffic QoS requirements. In SARA, we first use Nash Q-learning to provide a set of feasible RAT selection strategies while decreasing the strategy space in learning process, and then employ Monte Carlo tree search (MCTS) based Q-learning to perform resource allocation. Numerical results reveal that the network throughput can be maximized while meeting various traffic QoS requirements with limited number of searches by using our proposed SARA algorithm. For bulk arrival access requests, a suboptimal solution can be obtained as high computational complexity is incurred for achieving global optimality. Another attractive feature of SARA is that a tradeoff between the solution optimality and learning time can be readily made by terminating the search of MCTS according to the time constraint. Compared with traditional WiFi offloading schemes, SARA can significantly improve network throughput while guaranteeing traffic QoS requirements." @default.
- W2783156804 created "2018-01-26" @default.
- W2783156804 creator A5030171773 @default.
- W2783156804 creator A5056647610 @default.
- W2783156804 creator A5086286602 @default.
- W2783156804 creator A5086335553 @default.
- W2783156804 date "2018-05-01" @default.
- W2783156804 modified "2023-10-08" @default.
- W2783156804 title "Smart Multi-RAT Access Based on Multiagent Reinforcement Learning" @default.
- W2783156804 cites W1553471644 @default.
- W2783156804 cites W1589747210 @default.
- W2783156804 cites W1608206017 @default.
- W2783156804 cites W1714211023 @default.
- W2783156804 cites W1977989560 @default.
- W2783156804 cites W1997858594 @default.
- W2783156804 cites W1998944109 @default.
- W2783156804 cites W2038882788 @default.
- W2783156804 cites W2056916045 @default.
- W2783156804 cites W2067088693 @default.
- W2783156804 cites W2091159181 @default.
- W2783156804 cites W2093937332 @default.
- W2783156804 cites W2115671770 @default.
- W2783156804 cites W2117372974 @default.
- W2783156804 cites W2129670787 @default.
- W2783156804 cites W2136133623 @default.
- W2783156804 cites W2144369278 @default.
- W2783156804 cites W2154782861 @default.
- W2783156804 cites W2171203705 @default.
- W2783156804 cites W2257979135 @default.
- W2783156804 cites W2498604117 @default.
- W2783156804 cites W4255047891 @default.
- W2783156804 cites W783893065 @default.
- W2783156804 doi "https://doi.org/10.1109/tvt.2018.2793186" @default.
- W2783156804 hasPublicationYear "2018" @default.
- W2783156804 type Work @default.
- W2783156804 sameAs 2783156804 @default.
- W2783156804 citedByCount "52" @default.
- W2783156804 countsByYear W27831568042018 @default.
- W2783156804 countsByYear W27831568042019 @default.
- W2783156804 countsByYear W27831568042020 @default.
- W2783156804 countsByYear W27831568042021 @default.
- W2783156804 countsByYear W27831568042022 @default.
- W2783156804 countsByYear W27831568042023 @default.
- W2783156804 crossrefType "journal-article" @default.
- W2783156804 hasAuthorship W2783156804A5030171773 @default.
- W2783156804 hasAuthorship W2783156804A5056647610 @default.
- W2783156804 hasAuthorship W2783156804A5086286602 @default.
- W2783156804 hasAuthorship W2783156804A5086335553 @default.
- W2783156804 hasConcept C120314980 @default.
- W2783156804 hasConcept C153646914 @default.
- W2783156804 hasConcept C154945302 @default.
- W2783156804 hasConcept C157764524 @default.
- W2783156804 hasConcept C165696696 @default.
- W2783156804 hasConcept C29202148 @default.
- W2783156804 hasConcept C31258907 @default.
- W2783156804 hasConcept C38652104 @default.
- W2783156804 hasConcept C41008148 @default.
- W2783156804 hasConcept C5119721 @default.
- W2783156804 hasConcept C555944384 @default.
- W2783156804 hasConcept C76155785 @default.
- W2783156804 hasConcept C97541855 @default.
- W2783156804 hasConceptScore W2783156804C120314980 @default.
- W2783156804 hasConceptScore W2783156804C153646914 @default.
- W2783156804 hasConceptScore W2783156804C154945302 @default.
- W2783156804 hasConceptScore W2783156804C157764524 @default.
- W2783156804 hasConceptScore W2783156804C165696696 @default.
- W2783156804 hasConceptScore W2783156804C29202148 @default.
- W2783156804 hasConceptScore W2783156804C31258907 @default.
- W2783156804 hasConceptScore W2783156804C38652104 @default.
- W2783156804 hasConceptScore W2783156804C41008148 @default.
- W2783156804 hasConceptScore W2783156804C5119721 @default.
- W2783156804 hasConceptScore W2783156804C555944384 @default.
- W2783156804 hasConceptScore W2783156804C76155785 @default.
- W2783156804 hasConceptScore W2783156804C97541855 @default.
- W2783156804 hasFunder F4320321001 @default.
- W2783156804 hasFunder F4320335787 @default.
- W2783156804 hasIssue "5" @default.
- W2783156804 hasLocation W27831568041 @default.
- W2783156804 hasOpenAccess W2783156804 @default.
- W2783156804 hasPrimaryLocation W27831568041 @default.
- W2783156804 hasRelatedWork W1772332298 @default.
- W2783156804 hasRelatedWork W2027336428 @default.
- W2783156804 hasRelatedWork W2162959825 @default.
- W2783156804 hasRelatedWork W2556518664 @default.
- W2783156804 hasRelatedWork W2799307703 @default.
- W2783156804 hasRelatedWork W2919800250 @default.
- W2783156804 hasRelatedWork W2942811985 @default.
- W2783156804 hasRelatedWork W3089257401 @default.
- W2783156804 hasRelatedWork W4283067488 @default.
- W2783156804 hasRelatedWork W405294791 @default.
- W2783156804 hasVolume "67" @default.
- W2783156804 isParatext "false" @default.
- W2783156804 isRetracted "false" @default.
- W2783156804 magId "2783156804" @default.
- W2783156804 workType "article" @default.