Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783160015> ?p ?o ?g. }
- W2783160015 abstract "We investigate theoretically and numerically the possibility of existence of Fano and acoustic-induced transparency (AIT) resonances in a simple though realistic one-dimensional acoustic structure made of solid-fluid layers inserted between two fluids. These resonances are obtained by combining appropriately the zeros of transmission (antiresonance) induced by the solid layers and the local resonances induced by the solid or combined solid-fluid layers with surface free boundary conditions. In particular, we show the possibility of trapped modes, also called bound states in continuum, which have recently found a high renewal interest. These modes appear as resonances with zero width in the transmission spectra as well as in the density of states (DOS). We consider three different structures: (i) a single solid layer inserted between two fluids. This simple structure shows the possibility of existence of trapped modes, which are discrete modes of the solid layer that lie in the continuum modes of the surrounding fluids. We give explicit analytical expressions of the dispersion relation of these eigenmodes of the solid layer which are found independent of the nature of the surrounding fluids. By slightly detuning the angle of incidence from that associated to the trapped mode, we get a well-defined Fano resonance characterized by an asymmetric Fano profile in the transmission spectra. (ii) The second structure consists of a solid-fluid-solid triple layer embedded between two fluids. This structure is found more appropriate to show both Fano and acoustic-induced transparency resonances. We provide detailed analytical expressions for the transmission and reflection coefficients that enable us to deduce a closed-form expression of the dispersion relation giving the trapped modes. Two situations can be distinguished in the triple-layer system: in the case of a symmetric structure (i.e., the same solid layers) we show, by detuning the incidence angle $ensuremath{theta}$, the possibility of existence of Fano resonances that can be fitted following a Fano-type expression. The variation of the Fano parameter that describes the asymmetry of such resonances as well as their width versus $ensuremath{theta}$ is studied in detail. In the case of an asymmetric structure (i.e., different solid layers), we show the existence of an incidence angle that enables to squeeze a resonance between two transmission zeros induced by the two solid layers. This resonance behaves like an AIT resonance, its position and width depend on the nature of the fluid and solid layers as well as on the difference between the thicknesses of the solid layers. (iii) In the case of a periodic structure (phononic crystal), we show that trapped modes and Fano resonances give rise, respectively, to dispersionless flat bands with zero group velocity and nearly flat bands with negative or positive group velocities. The analytical results presented here are obtained by means of the Green's function method which enables to deduce in closed form: dispersion curves, transmission and reflection coefficients, DOS, as well as the displacement fields. The proposed solid-fluid layered structures should have important applications for designing acoustic mirrors and acoustic filters as well as supersonic and subsonic materials." @default.
- W2783160015 created "2018-01-26" @default.
- W2783160015 creator A5005222961 @default.
- W2783160015 creator A5024035703 @default.
- W2783160015 creator A5086235218 @default.
- W2783160015 date "2018-01-16" @default.
- W2783160015 modified "2023-10-11" @default.
- W2783160015 title "Trapped-mode-induced Fano resonance and acoustical transparency in a one-dimensional solid-fluid phononic crystal" @default.
- W2783160015 cites W1541856725 @default.
- W2783160015 cites W1626125235 @default.
- W2783160015 cites W1741750133 @default.
- W2783160015 cites W1964156271 @default.
- W2783160015 cites W1964759403 @default.
- W2783160015 cites W1969852125 @default.
- W2783160015 cites W1974532508 @default.
- W2783160015 cites W1978449352 @default.
- W2783160015 cites W1982709228 @default.
- W2783160015 cites W1987508730 @default.
- W2783160015 cites W1988948476 @default.
- W2783160015 cites W1991652919 @default.
- W2783160015 cites W1994072098 @default.
- W2783160015 cites W1997228786 @default.
- W2783160015 cites W1999028558 @default.
- W2783160015 cites W2008619506 @default.
- W2783160015 cites W2011054254 @default.
- W2783160015 cites W2011604809 @default.
- W2783160015 cites W2012273880 @default.
- W2783160015 cites W2014161118 @default.
- W2783160015 cites W2015329148 @default.
- W2783160015 cites W2015775422 @default.
- W2783160015 cites W2017305992 @default.
- W2783160015 cites W2022059210 @default.
- W2783160015 cites W2022879022 @default.
- W2783160015 cites W2025278345 @default.
- W2783160015 cites W2025307945 @default.
- W2783160015 cites W2032042797 @default.
- W2783160015 cites W2037417031 @default.
- W2783160015 cites W2039828918 @default.
- W2783160015 cites W2041460429 @default.
- W2783160015 cites W2043857342 @default.
- W2783160015 cites W2044182614 @default.
- W2783160015 cites W2048142960 @default.
- W2783160015 cites W2050205870 @default.
- W2783160015 cites W2050478398 @default.
- W2783160015 cites W2053183933 @default.
- W2783160015 cites W2055874879 @default.
- W2783160015 cites W2058541903 @default.
- W2783160015 cites W2059584724 @default.
- W2783160015 cites W2060627980 @default.
- W2783160015 cites W2068361247 @default.
- W2783160015 cites W2068895447 @default.
- W2783160015 cites W2074005433 @default.
- W2783160015 cites W2076035595 @default.
- W2783160015 cites W2082071425 @default.
- W2783160015 cites W2084055057 @default.
- W2783160015 cites W2087635230 @default.
- W2783160015 cites W2091785772 @default.
- W2783160015 cites W2092220680 @default.
- W2783160015 cites W2092692504 @default.
- W2783160015 cites W2098342677 @default.
- W2783160015 cites W2117286975 @default.
- W2783160015 cites W2142345685 @default.
- W2783160015 cites W2158843341 @default.
- W2783160015 cites W2170744552 @default.
- W2783160015 cites W2222517232 @default.
- W2783160015 cites W2263357210 @default.
- W2783160015 cites W2289938490 @default.
- W2783160015 cites W2292745736 @default.
- W2783160015 cites W2312765685 @default.
- W2783160015 cites W2346767375 @default.
- W2783160015 cites W2464491535 @default.
- W2783160015 cites W2494235437 @default.
- W2783160015 cites W2561435988 @default.
- W2783160015 cites W2581618817 @default.
- W2783160015 cites W2752267297 @default.
- W2783160015 cites W3037952079 @default.
- W2783160015 doi "https://doi.org/10.1103/physrevb.97.024304" @default.
- W2783160015 hasPublicationYear "2018" @default.
- W2783160015 type Work @default.
- W2783160015 sameAs 2783160015 @default.
- W2783160015 citedByCount "40" @default.
- W2783160015 countsByYear W27831600152018 @default.
- W2783160015 countsByYear W27831600152019 @default.
- W2783160015 countsByYear W27831600152020 @default.
- W2783160015 countsByYear W27831600152021 @default.
- W2783160015 countsByYear W27831600152022 @default.
- W2783160015 countsByYear W27831600152023 @default.
- W2783160015 crossrefType "journal-article" @default.
- W2783160015 hasAuthorship W2783160015A5005222961 @default.
- W2783160015 hasAuthorship W2783160015A5024035703 @default.
- W2783160015 hasAuthorship W2783160015A5086235218 @default.
- W2783160015 hasBestOaLocation W27831600152 @default.
- W2783160015 hasConcept C110879396 @default.
- W2783160015 hasConcept C120665830 @default.
- W2783160015 hasConcept C121332964 @default.
- W2783160015 hasConcept C139210041 @default.
- W2783160015 hasConcept C176150650 @default.
- W2783160015 hasConcept C184779094 @default.
- W2783160015 hasConcept C192562407 @default.
- W2783160015 hasConcept C202579712 @default.