Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783160710> ?p ?o ?g. }
- W2783160710 abstract "Nowadays, pattern recognition, computer vision, signal processing and medical image analysis, require the managing of large amount of multidimensional image databases, possibly sampled from nonlinear manifolds. The complex tasks involved in the analysis of such massive data lead to a strong demand for nonlinear methods for dimensionality reduction to achieve efficient representation for information extraction. In this avenue, manifold learning has been applied to embed nonlinear image data in lower dimensional spaces for subsequent analysis. The result allows a geometric interpretation of image spaces with relevant consequences for data topology, computation of image similarity, discriminant analysis/classification tasks and, more recently, for deep learning issues. In this paper, we firstly review Riemannian manifolds that compose the mathematical background in this field. Such background offers the support to set up a data model that embeds usual linear subspace learning and discriminant analysis results in local structures built from samples drawn from some unknown distribution. Afterwards, we discuss topological issues in data preparation for manifold learning algorithms as well as the determination of manifold dimension. Then, we survey dimensionality reduction techniques with particular attention to Riemannian manifold learning. Besides, we discuss the application of concepts in discrete and polyhedral geometry for synthesis and data clustering over the recovered Riemannian manifold with emphasis in face images in the computational experiments. Next, we discuss promising perspectives of manifold learning and related topics for image analysis, classification and relationships with deep learning methods. Specifically, we discuss the application of foliation theory, discriminant analysis and kernel methods in curved spaces. Besides, we take differential geometry in manifolds as a paradigm to discuss deep generative models and metric learning algorithms." @default.
- W2783160710 created "2018-01-26" @default.
- W2783160710 creator A5008848139 @default.
- W2783160710 creator A5075626456 @default.
- W2783160710 creator A5076757263 @default.
- W2783160710 date "2017-10-01" @default.
- W2783160710 modified "2023-09-26" @default.
- W2783160710 title "Geometric Data Analysis Based on Manifold Learning with Applications for Image Understanding" @default.
- W2783160710 cites W1480376833 @default.
- W2783160710 cites W1742512077 @default.
- W2783160710 cites W1965534165 @default.
- W2783160710 cites W1965604469 @default.
- W2783160710 cites W1971171352 @default.
- W2783160710 cites W1985314031 @default.
- W2783160710 cites W2001141328 @default.
- W2783160710 cites W2010441082 @default.
- W2783160710 cites W2030876210 @default.
- W2783160710 cites W2041657594 @default.
- W2783160710 cites W2053186076 @default.
- W2783160710 cites W2071569218 @default.
- W2783160710 cites W2077776048 @default.
- W2783160710 cites W2103096501 @default.
- W2783160710 cites W2106888200 @default.
- W2783160710 cites W2107741421 @default.
- W2783160710 cites W2118217205 @default.
- W2783160710 cites W2125003829 @default.
- W2783160710 cites W2140095548 @default.
- W2783160710 cites W2157576781 @default.
- W2783160710 cites W2169528473 @default.
- W2783160710 cites W2186590998 @default.
- W2783160710 cites W2327795403 @default.
- W2783160710 cites W2342792901 @default.
- W2783160710 cites W2477734150 @default.
- W2783160710 cites W2492307518 @default.
- W2783160710 cites W2521429215 @default.
- W2783160710 cites W2679426462 @default.
- W2783160710 cites W4295632235 @default.
- W2783160710 cites W4298238668 @default.
- W2783160710 cites W434012021 @default.
- W2783160710 doi "https://doi.org/10.1109/sibgrapi-t.2017.9" @default.
- W2783160710 hasPublicationYear "2017" @default.
- W2783160710 type Work @default.
- W2783160710 sameAs 2783160710 @default.
- W2783160710 citedByCount "5" @default.
- W2783160710 countsByYear W27831607102019 @default.
- W2783160710 countsByYear W27831607102020 @default.
- W2783160710 countsByYear W27831607102021 @default.
- W2783160710 countsByYear W27831607102022 @default.
- W2783160710 crossrefType "proceedings-article" @default.
- W2783160710 hasAuthorship W2783160710A5008848139 @default.
- W2783160710 hasAuthorship W2783160710A5075626456 @default.
- W2783160710 hasAuthorship W2783160710A5076757263 @default.
- W2783160710 hasConcept C109546454 @default.
- W2783160710 hasConcept C111030470 @default.
- W2783160710 hasConcept C119857082 @default.
- W2783160710 hasConcept C12520029 @default.
- W2783160710 hasConcept C127413603 @default.
- W2783160710 hasConcept C151876577 @default.
- W2783160710 hasConcept C153180895 @default.
- W2783160710 hasConcept C154945302 @default.
- W2783160710 hasConcept C169391604 @default.
- W2783160710 hasConcept C181104567 @default.
- W2783160710 hasConcept C195065555 @default.
- W2783160710 hasConcept C2524010 @default.
- W2783160710 hasConcept C30732413 @default.
- W2783160710 hasConcept C32834561 @default.
- W2783160710 hasConcept C33923547 @default.
- W2783160710 hasConcept C41008148 @default.
- W2783160710 hasConcept C529865628 @default.
- W2783160710 hasConcept C69738355 @default.
- W2783160710 hasConcept C70518039 @default.
- W2783160710 hasConcept C78519656 @default.
- W2783160710 hasConceptScore W2783160710C109546454 @default.
- W2783160710 hasConceptScore W2783160710C111030470 @default.
- W2783160710 hasConceptScore W2783160710C119857082 @default.
- W2783160710 hasConceptScore W2783160710C12520029 @default.
- W2783160710 hasConceptScore W2783160710C127413603 @default.
- W2783160710 hasConceptScore W2783160710C151876577 @default.
- W2783160710 hasConceptScore W2783160710C153180895 @default.
- W2783160710 hasConceptScore W2783160710C154945302 @default.
- W2783160710 hasConceptScore W2783160710C169391604 @default.
- W2783160710 hasConceptScore W2783160710C181104567 @default.
- W2783160710 hasConceptScore W2783160710C195065555 @default.
- W2783160710 hasConceptScore W2783160710C2524010 @default.
- W2783160710 hasConceptScore W2783160710C30732413 @default.
- W2783160710 hasConceptScore W2783160710C32834561 @default.
- W2783160710 hasConceptScore W2783160710C33923547 @default.
- W2783160710 hasConceptScore W2783160710C41008148 @default.
- W2783160710 hasConceptScore W2783160710C529865628 @default.
- W2783160710 hasConceptScore W2783160710C69738355 @default.
- W2783160710 hasConceptScore W2783160710C70518039 @default.
- W2783160710 hasConceptScore W2783160710C78519656 @default.
- W2783160710 hasLocation W27831607101 @default.
- W2783160710 hasOpenAccess W2783160710 @default.
- W2783160710 hasPrimaryLocation W27831607101 @default.
- W2783160710 hasRelatedWork W10734661 @default.
- W2783160710 hasRelatedWork W11652828 @default.
- W2783160710 hasRelatedWork W12370636 @default.
- W2783160710 hasRelatedWork W12723491 @default.
- W2783160710 hasRelatedWork W1781265 @default.