Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783161366> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2783161366 abstract "This study aims to implement a machine learning technique in identifying the irregularities of customer behavior on the use of prepaid electricity pulses. The methods used are Linear Discriminant Analysis and Logistic Regression. The performance of the classification system will be evaluated using the 10-fold cross-validation technique. Validation results are measured using accuracy, precision and recall values. In this research shows that the use of machine learning technique has a good performance in classification of electrical consumption behavior. Experimental results with the different amount of data testing indicate that Logistic Regression method has high accuracy, precision, and recall value when compared with Linear Discriminant Analysis that is 100%. This is due to Logistic Regression method can predict irregularities accurately because the addition of the amount of data does not affect the performance of the method." @default.
- W2783161366 created "2018-01-26" @default.
- W2783161366 creator A5036924628 @default.
- W2783161366 creator A5089918406 @default.
- W2783161366 creator A5091828097 @default.
- W2783161366 date "2017-10-01" @default.
- W2783161366 modified "2023-09-23" @default.
- W2783161366 title "Identifying irregularity electricity usage of customer behaviors using logistic regression and linear discriminant analysis" @default.
- W2783161366 cites W1596265989 @default.
- W2783161366 cites W2080969404 @default.
- W2783161366 cites W2081423622 @default.
- W2783161366 cites W2090842524 @default.
- W2783161366 cites W2158698691 @default.
- W2783161366 cites W2296337638 @default.
- W2783161366 cites W2312446965 @default.
- W2783161366 cites W2417366420 @default.
- W2783161366 cites W2535281551 @default.
- W2783161366 cites W2545438192 @default.
- W2783161366 doi "https://doi.org/10.1109/icsitech.2017.8257174" @default.
- W2783161366 hasPublicationYear "2017" @default.
- W2783161366 type Work @default.
- W2783161366 sameAs 2783161366 @default.
- W2783161366 citedByCount "8" @default.
- W2783161366 countsByYear W27831613662018 @default.
- W2783161366 countsByYear W27831613662019 @default.
- W2783161366 countsByYear W27831613662020 @default.
- W2783161366 countsByYear W27831613662021 @default.
- W2783161366 countsByYear W27831613662022 @default.
- W2783161366 crossrefType "proceedings-article" @default.
- W2783161366 hasAuthorship W2783161366A5036924628 @default.
- W2783161366 hasAuthorship W2783161366A5089918406 @default.
- W2783161366 hasAuthorship W2783161366A5091828097 @default.
- W2783161366 hasConcept C105795698 @default.
- W2783161366 hasConcept C119857082 @default.
- W2783161366 hasConcept C124101348 @default.
- W2783161366 hasConcept C151956035 @default.
- W2783161366 hasConcept C152877465 @default.
- W2783161366 hasConcept C153180895 @default.
- W2783161366 hasConcept C154945302 @default.
- W2783161366 hasConcept C33923547 @default.
- W2783161366 hasConcept C41008148 @default.
- W2783161366 hasConcept C48921125 @default.
- W2783161366 hasConcept C61722155 @default.
- W2783161366 hasConcept C69738355 @default.
- W2783161366 hasConceptScore W2783161366C105795698 @default.
- W2783161366 hasConceptScore W2783161366C119857082 @default.
- W2783161366 hasConceptScore W2783161366C124101348 @default.
- W2783161366 hasConceptScore W2783161366C151956035 @default.
- W2783161366 hasConceptScore W2783161366C152877465 @default.
- W2783161366 hasConceptScore W2783161366C153180895 @default.
- W2783161366 hasConceptScore W2783161366C154945302 @default.
- W2783161366 hasConceptScore W2783161366C33923547 @default.
- W2783161366 hasConceptScore W2783161366C41008148 @default.
- W2783161366 hasConceptScore W2783161366C48921125 @default.
- W2783161366 hasConceptScore W2783161366C61722155 @default.
- W2783161366 hasConceptScore W2783161366C69738355 @default.
- W2783161366 hasLocation W27831613661 @default.
- W2783161366 hasOpenAccess W2783161366 @default.
- W2783161366 hasPrimaryLocation W27831613661 @default.
- W2783161366 hasRelatedWork W1818213964 @default.
- W2783161366 hasRelatedWork W1964571646 @default.
- W2783161366 hasRelatedWork W2037579778 @default.
- W2783161366 hasRelatedWork W2101303134 @default.
- W2783161366 hasRelatedWork W2113508289 @default.
- W2783161366 hasRelatedWork W2113515146 @default.
- W2783161366 hasRelatedWork W2273491956 @default.
- W2783161366 hasRelatedWork W2369584837 @default.
- W2783161366 hasRelatedWork W2380087048 @default.
- W2783161366 hasRelatedWork W2404309945 @default.
- W2783161366 hasRelatedWork W2501308155 @default.
- W2783161366 hasRelatedWork W2561590197 @default.
- W2783161366 hasRelatedWork W2586257027 @default.
- W2783161366 hasRelatedWork W2797622306 @default.
- W2783161366 hasRelatedWork W2906466243 @default.
- W2783161366 hasRelatedWork W2911381491 @default.
- W2783161366 hasRelatedWork W3122277494 @default.
- W2783161366 hasRelatedWork W81575802 @default.
- W2783161366 hasRelatedWork W2864871824 @default.
- W2783161366 hasRelatedWork W2933018779 @default.
- W2783161366 isParatext "false" @default.
- W2783161366 isRetracted "false" @default.
- W2783161366 magId "2783161366" @default.
- W2783161366 workType "article" @default.