Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783165089> ?p ?o ?g. }
- W2783165089 endingPage "2821" @default.
- W2783165089 startingPage "2811" @default.
- W2783165089 abstract "Remote sensing image scene classification is an active and challenging task driven by many applications. More recently, with the advances of deep learning models especially convolutional neural networks (CNNs), the performance of remote sensing image scene classification has been significantly improved due to the powerful feature representations learnt through CNNs. Although great success has been obtained so far, the problems of within-class diversity and between-class similarity are still two big challenges. To address these problems, in this paper, we propose a simple but effective method to learn discriminative CNNs (D-CNNs) to boost the performance of remote sensing image scene classification. Different from the traditional CNN models that minimize only the cross entropy loss, our proposed D-CNN models are trained by optimizing a new discriminative objective function. To this end, apart from minimizing the classification error, we also explicitly impose a metric learning regularization term on the CNN features. The metric learning regularization enforces the D-CNN models to be more discriminative so that, in the new D-CNN feature spaces, the images from the same scene class are mapped closely to each other and the images of different classes are mapped as farther apart as possible. In the experiments, we comprehensively evaluate the proposed method on three publicly available benchmark data sets using three off-the-shelf CNN models. Experimental results demonstrate that our proposed D-CNN methods outperform the existing baseline methods and achieve state-of-the-art results on all three data sets." @default.
- W2783165089 created "2018-01-26" @default.
- W2783165089 creator A5012529382 @default.
- W2783165089 creator A5017535979 @default.
- W2783165089 creator A5025976462 @default.
- W2783165089 creator A5049629716 @default.
- W2783165089 creator A5080476856 @default.
- W2783165089 date "2018-05-01" @default.
- W2783165089 modified "2023-10-14" @default.
- W2783165089 title "When Deep Learning Meets Metric Learning: Remote Sensing Image Scene Classification via Learning Discriminative CNNs" @default.
- W2783165089 cites W1560922506 @default.
- W2783165089 cites W1576332977 @default.
- W2783165089 cites W1953767411 @default.
- W2783165089 cites W1963500125 @default.
- W2783165089 cites W1968591910 @default.
- W2783165089 cites W1977617632 @default.
- W2783165089 cites W1980038761 @default.
- W2783165089 cites W2001123951 @default.
- W2783165089 cites W2002281921 @default.
- W2783165089 cites W2005368619 @default.
- W2783165089 cites W2006603039 @default.
- W2783165089 cites W2015386604 @default.
- W2783165089 cites W2017448754 @default.
- W2783165089 cites W2020912318 @default.
- W2783165089 cites W2024106491 @default.
- W2783165089 cites W2067178723 @default.
- W2783165089 cites W2070452328 @default.
- W2783165089 cites W2076434944 @default.
- W2783165089 cites W2085625911 @default.
- W2783165089 cites W2086866337 @default.
- W2783165089 cites W2097117768 @default.
- W2783165089 cites W2098676252 @default.
- W2783165089 cites W2179290474 @default.
- W2783165089 cites W2241460726 @default.
- W2783165089 cites W2248723555 @default.
- W2783165089 cites W2253590344 @default.
- W2783165089 cites W2268837224 @default.
- W2783165089 cites W2291068538 @default.
- W2783165089 cites W2295576075 @default.
- W2783165089 cites W2303475025 @default.
- W2783165089 cites W2308318555 @default.
- W2783165089 cites W2320738207 @default.
- W2783165089 cites W2338459354 @default.
- W2783165089 cites W2342880667 @default.
- W2783165089 cites W2347115704 @default.
- W2783165089 cites W2358876993 @default.
- W2783165089 cites W2411876745 @default.
- W2783165089 cites W2412588858 @default.
- W2783165089 cites W2469277230 @default.
- W2783165089 cites W2512351403 @default.
- W2783165089 cites W2570214200 @default.
- W2783165089 cites W2581874211 @default.
- W2783165089 cites W2598199894 @default.
- W2783165089 cites W2605793178 @default.
- W2783165089 cites W2607558879 @default.
- W2783165089 cites W2610614780 @default.
- W2783165089 cites W2617536493 @default.
- W2783165089 cites W2620179114 @default.
- W2783165089 cites W2620429297 @default.
- W2783165089 cites W2620858446 @default.
- W2783165089 cites W2727875856 @default.
- W2783165089 cites W2744582969 @default.
- W2783165089 cites W2759518055 @default.
- W2783165089 cites W2762381996 @default.
- W2783165089 cites W2764205729 @default.
- W2783165089 cites W2779335303 @default.
- W2783165089 cites W2962790054 @default.
- W2783165089 cites W2963026686 @default.
- W2783165089 cites W3103856189 @default.
- W2783165089 cites W3105577662 @default.
- W2783165089 cites W946771493 @default.
- W2783165089 doi "https://doi.org/10.1109/tgrs.2017.2783902" @default.
- W2783165089 hasPublicationYear "2018" @default.
- W2783165089 type Work @default.
- W2783165089 sameAs 2783165089 @default.
- W2783165089 citedByCount "909" @default.
- W2783165089 countsByYear W27831650892017 @default.
- W2783165089 countsByYear W27831650892018 @default.
- W2783165089 countsByYear W27831650892019 @default.
- W2783165089 countsByYear W27831650892020 @default.
- W2783165089 countsByYear W27831650892021 @default.
- W2783165089 countsByYear W27831650892022 @default.
- W2783165089 countsByYear W27831650892023 @default.
- W2783165089 crossrefType "journal-article" @default.
- W2783165089 hasAuthorship W2783165089A5012529382 @default.
- W2783165089 hasAuthorship W2783165089A5017535979 @default.
- W2783165089 hasAuthorship W2783165089A5025976462 @default.
- W2783165089 hasAuthorship W2783165089A5049629716 @default.
- W2783165089 hasAuthorship W2783165089A5080476856 @default.
- W2783165089 hasConcept C108583219 @default.
- W2783165089 hasConcept C115961682 @default.
- W2783165089 hasConcept C119857082 @default.
- W2783165089 hasConcept C153180895 @default.
- W2783165089 hasConcept C154945302 @default.
- W2783165089 hasConcept C162324750 @default.
- W2783165089 hasConcept C176217482 @default.
- W2783165089 hasConcept C21547014 @default.
- W2783165089 hasConcept C2776135515 @default.