Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783170245> ?p ?o ?g. }
Showing items 1 to 54 of
54
with 100 items per page.
- W2783170245 endingPage "24" @default.
- W2783170245 startingPage "19" @default.
- W2783170245 abstract "Many algorithms that can be used to predict the traffic flow, there are some who are known algorithms which have a more accurate performance and some are off in the performance test the accuracy of the algorithm. For this algorithm needs to be tested to find out. The proposed method is SVM, SVM-PSO. Compared this method in neural network-based algorithm that has been in curatorial commentary for UJIA rentettime prediction data. Algorithms to be tested is SVM, SVM-PSO and Neural Network, which used the data to predict short-term traffic flow. Each of these algorithms will be implemented by using RapidMiner5.1.Performance measurement is doneby calculating the average amount of error that occurs through Root Mean Square Error(RMSE). The smaller the valueof each of the stated performance parameters predicted value closer to the true value. Thus it can be seen that the algorithm is more accurate." @default.
- W2783170245 created "2018-01-26" @default.
- W2783170245 creator A5021016105 @default.
- W2783170245 date "2016-08-08" @default.
- W2783170245 modified "2023-09-27" @default.
- W2783170245 title "Analisis Dan Perbandingan Akurasi Model Prediksi Rentet Waktu Support Vector Machines Dengan Support Vector Machines Particle Swarm Optimization Untuk Arus Lalu Lintas Jangka Pendek" @default.
- W2783170245 doi "https://doi.org/10.29080/systemic.v2i1.103" @default.
- W2783170245 hasPublicationYear "2016" @default.
- W2783170245 type Work @default.
- W2783170245 sameAs 2783170245 @default.
- W2783170245 citedByCount "1" @default.
- W2783170245 countsByYear W27831702452022 @default.
- W2783170245 crossrefType "journal-article" @default.
- W2783170245 hasAuthorship W2783170245A5021016105 @default.
- W2783170245 hasBestOaLocation W27831702451 @default.
- W2783170245 hasConcept C105795698 @default.
- W2783170245 hasConcept C11413529 @default.
- W2783170245 hasConcept C12267149 @default.
- W2783170245 hasConcept C139945424 @default.
- W2783170245 hasConcept C154945302 @default.
- W2783170245 hasConcept C33923547 @default.
- W2783170245 hasConcept C41008148 @default.
- W2783170245 hasConcept C50644808 @default.
- W2783170245 hasConcept C85617194 @default.
- W2783170245 hasConceptScore W2783170245C105795698 @default.
- W2783170245 hasConceptScore W2783170245C11413529 @default.
- W2783170245 hasConceptScore W2783170245C12267149 @default.
- W2783170245 hasConceptScore W2783170245C139945424 @default.
- W2783170245 hasConceptScore W2783170245C154945302 @default.
- W2783170245 hasConceptScore W2783170245C33923547 @default.
- W2783170245 hasConceptScore W2783170245C41008148 @default.
- W2783170245 hasConceptScore W2783170245C50644808 @default.
- W2783170245 hasConceptScore W2783170245C85617194 @default.
- W2783170245 hasIssue "1" @default.
- W2783170245 hasLocation W27831702451 @default.
- W2783170245 hasOpenAccess W2783170245 @default.
- W2783170245 hasPrimaryLocation W27831702451 @default.
- W2783170245 hasRelatedWork W1968304261 @default.
- W2783170245 hasRelatedWork W2037316683 @default.
- W2783170245 hasRelatedWork W2069388972 @default.
- W2783170245 hasRelatedWork W2350832155 @default.
- W2783170245 hasRelatedWork W2350868219 @default.
- W2783170245 hasRelatedWork W2375246106 @default.
- W2783170245 hasRelatedWork W2977940867 @default.
- W2783170245 hasRelatedWork W3115048730 @default.
- W2783170245 hasRelatedWork W4308732291 @default.
- W2783170245 hasRelatedWork W4310730675 @default.
- W2783170245 hasVolume "2" @default.
- W2783170245 isParatext "false" @default.
- W2783170245 isRetracted "false" @default.
- W2783170245 magId "2783170245" @default.
- W2783170245 workType "article" @default.