Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783172145> ?p ?o ?g. }
- W2783172145 endingPage "129" @default.
- W2783172145 startingPage "114" @default.
- W2783172145 abstract "Förster resonance energy transfer (FRET) between a donor nucleobase analogue and an acceptor nucleobase analogue, base-base FRET, works as a spectroscopic ruler and protractor. With their firm stacking and ability to replace the natural nucleic acid bases inside the base-stack, base analogue donor and acceptor molecules complement external fluorophores like the Cy-, Alexa- and ATTO-dyes and enable detailed investigations of structure and dynamics of nucleic acid containing systems. The first base-base FRET pair, tCO-tCnitro, has recently been complemented with among others the adenine analogue FRET pair, qAN1-qAnitro, increasing the flexibility of the methodology. Here we present the design, synthesis, photophysical characterization and use of such base analogues. They enable a higher control of the FRET orientation factor, κ2, have a different distance window of opportunity than external fluorophores, and, thus, have the potential to facilitate better structure resolution. Netropsin DNA binding and the B-to-Z-DNA transition are examples of structure investigations that recently have been performed using base-base FRET and that are described here. Base-base FRET has been around for less than a decade, only in 2017 expanded beyond one FRET pair, and represents a highly promising structure and dynamics methodology for the field of nucleic acids. Here we bring up its advantages as well as disadvantages and touch upon potential future applications." @default.
- W2783172145 created "2018-01-26" @default.
- W2783172145 creator A5024573440 @default.
- W2783172145 creator A5053244201 @default.
- W2783172145 creator A5061533495 @default.
- W2783172145 creator A5091271050 @default.
- W2783172145 creator A5091395541 @default.
- W2783172145 date "2018-01-10" @default.
- W2783172145 modified "2023-10-14" @default.
- W2783172145 title "Fluorescent nucleobase analogues for base–base FRET in nucleic acids: synthesis, photophysics and applications" @default.
- W2783172145 cites W107040987 @default.
- W2783172145 cites W1157840896 @default.
- W2783172145 cites W1579716589 @default.
- W2783172145 cites W1605738254 @default.
- W2783172145 cites W1879154153 @default.
- W2783172145 cites W1969509102 @default.
- W2783172145 cites W1971481046 @default.
- W2783172145 cites W1972262474 @default.
- W2783172145 cites W1972622825 @default.
- W2783172145 cites W1973264894 @default.
- W2783172145 cites W1973503110 @default.
- W2783172145 cites W1973699439 @default.
- W2783172145 cites W1979270194 @default.
- W2783172145 cites W1979602987 @default.
- W2783172145 cites W1984912000 @default.
- W2783172145 cites W1984987595 @default.
- W2783172145 cites W1994021375 @default.
- W2783172145 cites W1994607573 @default.
- W2783172145 cites W1997094705 @default.
- W2783172145 cites W2006932566 @default.
- W2783172145 cites W2009771834 @default.
- W2783172145 cites W2013530233 @default.
- W2783172145 cites W2016800407 @default.
- W2783172145 cites W2018936472 @default.
- W2783172145 cites W2018996043 @default.
- W2783172145 cites W2022846880 @default.
- W2783172145 cites W2023289128 @default.
- W2783172145 cites W2026283106 @default.
- W2783172145 cites W2032151296 @default.
- W2783172145 cites W2045442517 @default.
- W2783172145 cites W2054244366 @default.
- W2783172145 cites W2054786420 @default.
- W2783172145 cites W2056476654 @default.
- W2783172145 cites W2057666290 @default.
- W2783172145 cites W2067878769 @default.
- W2783172145 cites W2070588515 @default.
- W2783172145 cites W2070908207 @default.
- W2783172145 cites W2074264340 @default.
- W2783172145 cites W2074359011 @default.
- W2783172145 cites W2074898729 @default.
- W2783172145 cites W2080450988 @default.
- W2783172145 cites W2081930801 @default.
- W2783172145 cites W2082150568 @default.
- W2783172145 cites W2084217994 @default.
- W2783172145 cites W2084943539 @default.
- W2783172145 cites W2089617243 @default.
- W2783172145 cites W2091837211 @default.
- W2783172145 cites W2093213499 @default.
- W2783172145 cites W2093481487 @default.
- W2783172145 cites W2094146192 @default.
- W2783172145 cites W2108193327 @default.
- W2783172145 cites W2112568806 @default.
- W2783172145 cites W2115316940 @default.
- W2783172145 cites W2117226853 @default.
- W2783172145 cites W2120687754 @default.
- W2783172145 cites W2132677630 @default.
- W2783172145 cites W2133296358 @default.
- W2783172145 cites W2137297265 @default.
- W2783172145 cites W2145325210 @default.
- W2783172145 cites W2157784413 @default.
- W2783172145 cites W2158349714 @default.
- W2783172145 cites W2158896141 @default.
- W2783172145 cites W2161169616 @default.
- W2783172145 cites W2168919966 @default.
- W2783172145 cites W2168921143 @default.
- W2783172145 cites W2265983592 @default.
- W2783172145 cites W2286747012 @default.
- W2783172145 cites W2328366366 @default.
- W2783172145 cites W2329877695 @default.
- W2783172145 cites W2330685085 @default.
- W2783172145 cites W2334849580 @default.
- W2783172145 cites W2471217808 @default.
- W2783172145 cites W2491458126 @default.
- W2783172145 cites W2560537404 @default.
- W2783172145 cites W2605681689 @default.
- W2783172145 cites W2614630372 @default.
- W2783172145 cites W2625033456 @default.
- W2783172145 cites W2626565560 @default.
- W2783172145 cites W2735196374 @default.
- W2783172145 cites W2951236048 @default.
- W2783172145 cites W4212831456 @default.
- W2783172145 cites W789757765 @default.
- W2783172145 doi "https://doi.org/10.3762/bjoc.14.7" @default.
- W2783172145 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5789401" @default.
- W2783172145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29441135" @default.
- W2783172145 hasPublicationYear "2018" @default.
- W2783172145 type Work @default.
- W2783172145 sameAs 2783172145 @default.