Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783172472> ?p ?o ?g. }
- W2783172472 endingPage "1106" @default.
- W2783172472 startingPage "1098" @default.
- W2783172472 abstract "Purpose Prognostic biomarkers are needed to guide the management of early-stage non-small cell lung cancer (NSCLC). This work aims to develop an image-based prognostic signature and assess its complementary value to existing biomarkers. Methods and Materials We retrospectively analyzed data of stage I NSCLC in 8 cohorts. On the basis of an analysis of 39 computed tomography (CT) features characterizing tumor and its relation to neighboring pleura, we developed a prognostic signature in an institutional cohort (n = 117) and tested it in an external cohort (n = 88). A third cohort of 89 patients with CT and gene expression data was used to create a surrogate genomic signature of the imaging signature. We conducted further validation using data from 5 gene expression cohorts (n = 639) and built a composite signature by integrating with the cell-cycle progression (CCP) score and clinical variables. Results An imaging signature consisting of a pleural contact index and normalized inverse difference was significantly associated with overall survival in both imaging cohorts (P = .0005 and P = .0009). Functional enrichment analysis revealed that genes highly correlated with the imaging signature were related to immune response, such as lymphocyte activation and chemotaxis (false discovery rate < 0.05). A genomic surrogate of the imaging signature remained a significant predictor of survival when we adjusted for known prognostic factors (hazard ratio, 1.81; 95% confidence interval, 1.34-2.44; P < .0001) and stratified patients within subgroups as defined by stage, histology, or CCP score. A composite signature outperformed the genomic surrogate, CCP score, and clinical model alone (P < .01) regarding concordance index (0.70 vs 0.62-0.63). Conclusions The proposed CT imaging signature reflects fundamental biological differences in tumors and predicts overall survival in patients with stage I NSCLC. When combined with established prognosticators, the imaging signature improves survival prediction. Prognostic biomarkers are needed to guide the management of early-stage non-small cell lung cancer (NSCLC). This work aims to develop an image-based prognostic signature and assess its complementary value to existing biomarkers. We retrospectively analyzed data of stage I NSCLC in 8 cohorts. On the basis of an analysis of 39 computed tomography (CT) features characterizing tumor and its relation to neighboring pleura, we developed a prognostic signature in an institutional cohort (n = 117) and tested it in an external cohort (n = 88). A third cohort of 89 patients with CT and gene expression data was used to create a surrogate genomic signature of the imaging signature. We conducted further validation using data from 5 gene expression cohorts (n = 639) and built a composite signature by integrating with the cell-cycle progression (CCP) score and clinical variables. An imaging signature consisting of a pleural contact index and normalized inverse difference was significantly associated with overall survival in both imaging cohorts (P = .0005 and P = .0009). Functional enrichment analysis revealed that genes highly correlated with the imaging signature were related to immune response, such as lymphocyte activation and chemotaxis (false discovery rate < 0.05). A genomic surrogate of the imaging signature remained a significant predictor of survival when we adjusted for known prognostic factors (hazard ratio, 1.81; 95% confidence interval, 1.34-2.44; P < .0001) and stratified patients within subgroups as defined by stage, histology, or CCP score. A composite signature outperformed the genomic surrogate, CCP score, and clinical model alone (P < .01) regarding concordance index (0.70 vs 0.62-0.63). The proposed CT imaging signature reflects fundamental biological differences in tumors and predicts overall survival in patients with stage I NSCLC. When combined with established prognosticators, the imaging signature improves survival prediction." @default.
- W2783172472 created "2018-01-26" @default.
- W2783172472 creator A5001873561 @default.
- W2783172472 creator A5003430757 @default.
- W2783172472 creator A5006220393 @default.
- W2783172472 creator A5016420174 @default.
- W2783172472 creator A5017134771 @default.
- W2783172472 creator A5030887743 @default.
- W2783172472 creator A5048270591 @default.
- W2783172472 creator A5053183388 @default.
- W2783172472 creator A5065510735 @default.
- W2783172472 creator A5087455824 @default.
- W2783172472 date "2018-11-01" @default.
- W2783172472 modified "2023-09-27" @default.
- W2783172472 title "A Quantitative CT Imaging Signature Predicts Survival and Complements Established Prognosticators in Stage I Non-Small Cell Lung Cancer" @default.
- W2783172472 cites W130099911 @default.
- W2783172472 cites W1896436952 @default.
- W2783172472 cites W1952602278 @default.
- W2783172472 cites W1981876938 @default.
- W2783172472 cites W1987054640 @default.
- W2783172472 cites W2043221320 @default.
- W2783172472 cites W2045363444 @default.
- W2783172472 cites W2046815613 @default.
- W2783172472 cites W2064297038 @default.
- W2783172472 cites W2074646914 @default.
- W2783172472 cites W2074703669 @default.
- W2783172472 cites W2087887679 @default.
- W2783172472 cites W2103004421 @default.
- W2783172472 cites W2106421416 @default.
- W2783172472 cites W2108371618 @default.
- W2783172472 cites W2116634113 @default.
- W2783172472 cites W2138550913 @default.
- W2783172472 cites W2140124489 @default.
- W2783172472 cites W2140965184 @default.
- W2783172472 cites W2142266080 @default.
- W2783172472 cites W2142457016 @default.
- W2783172472 cites W2147853263 @default.
- W2783172472 cites W2149199519 @default.
- W2783172472 cites W2150148763 @default.
- W2783172472 cites W2151020778 @default.
- W2783172472 cites W2166401924 @default.
- W2783172472 cites W2167278653 @default.
- W2783172472 cites W2174661749 @default.
- W2783172472 cites W2207540049 @default.
- W2783172472 cites W2235523093 @default.
- W2783172472 cites W2269767062 @default.
- W2783172472 cites W2290433232 @default.
- W2783172472 cites W2307308593 @default.
- W2783172472 cites W2327203407 @default.
- W2783172472 cites W2331032341 @default.
- W2783172472 cites W2414064355 @default.
- W2783172472 cites W2608764892 @default.
- W2783172472 cites W2733991343 @default.
- W2783172472 cites W2737453412 @default.
- W2783172472 cites W4256661845 @default.
- W2783172472 doi "https://doi.org/10.1016/j.ijrobp.2018.01.006" @default.
- W2783172472 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29439884" @default.
- W2783172472 hasPublicationYear "2018" @default.
- W2783172472 type Work @default.
- W2783172472 sameAs 2783172472 @default.
- W2783172472 citedByCount "18" @default.
- W2783172472 countsByYear W27831724722018 @default.
- W2783172472 countsByYear W27831724722019 @default.
- W2783172472 countsByYear W27831724722020 @default.
- W2783172472 countsByYear W27831724722021 @default.
- W2783172472 countsByYear W27831724722022 @default.
- W2783172472 countsByYear W27831724722023 @default.
- W2783172472 crossrefType "journal-article" @default.
- W2783172472 hasAuthorship W2783172472A5001873561 @default.
- W2783172472 hasAuthorship W2783172472A5003430757 @default.
- W2783172472 hasAuthorship W2783172472A5006220393 @default.
- W2783172472 hasAuthorship W2783172472A5016420174 @default.
- W2783172472 hasAuthorship W2783172472A5017134771 @default.
- W2783172472 hasAuthorship W2783172472A5030887743 @default.
- W2783172472 hasAuthorship W2783172472A5048270591 @default.
- W2783172472 hasAuthorship W2783172472A5053183388 @default.
- W2783172472 hasAuthorship W2783172472A5065510735 @default.
- W2783172472 hasAuthorship W2783172472A5087455824 @default.
- W2783172472 hasConcept C104317684 @default.
- W2783172472 hasConcept C121608353 @default.
- W2783172472 hasConcept C126322002 @default.
- W2783172472 hasConcept C141341695 @default.
- W2783172472 hasConcept C143998085 @default.
- W2783172472 hasConcept C146357865 @default.
- W2783172472 hasConcept C150194340 @default.
- W2783172472 hasConcept C151730666 @default.
- W2783172472 hasConcept C185592680 @default.
- W2783172472 hasConcept C207103383 @default.
- W2783172472 hasConcept C2776256026 @default.
- W2783172472 hasConcept C2779733811 @default.
- W2783172472 hasConcept C44249647 @default.
- W2783172472 hasConcept C50382708 @default.
- W2783172472 hasConcept C55493867 @default.
- W2783172472 hasConcept C71924100 @default.
- W2783172472 hasConcept C72563966 @default.
- W2783172472 hasConcept C86803240 @default.
- W2783172472 hasConceptScore W2783172472C104317684 @default.
- W2783172472 hasConceptScore W2783172472C121608353 @default.