Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783180185> ?p ?o ?g. }
- W2783180185 endingPage "170" @default.
- W2783180185 startingPage "159" @default.
- W2783180185 abstract "Sparse Bayesian learning (SBL) has emerged as a fast and competitive method to perform sparse processing. The SBL algorithm, which is developed using a Bayesian framework, approximately solves a non-convex optimization problem using fixed point updates. It provides comparable performance and is significantly faster than convex optimization techniques used in sparse processing. We propose a signal model which accounts for dictionary mismatch and the presence of errors in the weight vector at low signal-to-noise ratios. A fixed point update equation is derived which incorporates the statistics of mismatch and weight errors. We also process observations from multiple dictionaries. Noise variances are estimated using stochastic maximum likelihood. The derived update equations are studied quantitatively using beamforming simulations applied to direction-of-arrival (DoA). Performance of SBL using single- and multi-frequency observations, and in the presence of aliasing, is evaluated. SwellEx-96 experimental data demonstrates qualitatively the advantages of SBL." @default.
- W2783180185 created "2018-01-26" @default.
- W2783180185 creator A5004718675 @default.
- W2783180185 creator A5006089040 @default.
- W2783180185 creator A5014100872 @default.
- W2783180185 creator A5034596914 @default.
- W2783180185 creator A5081149776 @default.
- W2783180185 date "2019-06-01" @default.
- W2783180185 modified "2023-09-26" @default.
- W2783180185 title "Sparse Bayesian learning with multiple dictionaries" @default.
- W2783180185 cites W1974718273 @default.
- W2783180185 cites W1997222146 @default.
- W2783180185 cites W2006035071 @default.
- W2783180185 cites W2016625067 @default.
- W2783180185 cites W2071284784 @default.
- W2783180185 cites W2078204800 @default.
- W2783180185 cites W2103492569 @default.
- W2783180185 cites W2103519107 @default.
- W2783180185 cites W2146000945 @default.
- W2783180185 cites W2148154358 @default.
- W2783180185 cites W2151693816 @default.
- W2783180185 cites W2152279006 @default.
- W2783180185 cites W2161765392 @default.
- W2783180185 cites W2511885285 @default.
- W2783180185 cites W2570253813 @default.
- W2783180185 cites W2615392485 @default.
- W2783180185 cites W2889766507 @default.
- W2783180185 cites W2924987681 @default.
- W2783180185 cites W3098352114 @default.
- W2783180185 cites W3104217244 @default.
- W2783180185 cites W4241068368 @default.
- W2783180185 cites W866015105 @default.
- W2783180185 doi "https://doi.org/10.1016/j.sigpro.2019.02.003" @default.
- W2783180185 hasPublicationYear "2019" @default.
- W2783180185 type Work @default.
- W2783180185 sameAs 2783180185 @default.
- W2783180185 citedByCount "43" @default.
- W2783180185 countsByYear W27831801852017 @default.
- W2783180185 countsByYear W27831801852019 @default.
- W2783180185 countsByYear W27831801852020 @default.
- W2783180185 countsByYear W27831801852021 @default.
- W2783180185 countsByYear W27831801852022 @default.
- W2783180185 countsByYear W27831801852023 @default.
- W2783180185 crossrefType "journal-article" @default.
- W2783180185 hasAuthorship W2783180185A5004718675 @default.
- W2783180185 hasAuthorship W2783180185A5006089040 @default.
- W2783180185 hasAuthorship W2783180185A5014100872 @default.
- W2783180185 hasAuthorship W2783180185A5034596914 @default.
- W2783180185 hasAuthorship W2783180185A5081149776 @default.
- W2783180185 hasBestOaLocation W27831801851 @default.
- W2783180185 hasConcept C104267543 @default.
- W2783180185 hasConcept C105795698 @default.
- W2783180185 hasConcept C107673813 @default.
- W2783180185 hasConcept C112680207 @default.
- W2783180185 hasConcept C11413529 @default.
- W2783180185 hasConcept C115961682 @default.
- W2783180185 hasConcept C126255220 @default.
- W2783180185 hasConcept C136536468 @default.
- W2783180185 hasConcept C153180895 @default.
- W2783180185 hasConcept C154945302 @default.
- W2783180185 hasConcept C157972887 @default.
- W2783180185 hasConcept C160234255 @default.
- W2783180185 hasConcept C2524010 @default.
- W2783180185 hasConcept C33923547 @default.
- W2783180185 hasConcept C4069607 @default.
- W2783180185 hasConcept C41008148 @default.
- W2783180185 hasConcept C54197355 @default.
- W2783180185 hasConcept C554190296 @default.
- W2783180185 hasConcept C76155785 @default.
- W2783180185 hasConcept C99498987 @default.
- W2783180185 hasConceptScore W2783180185C104267543 @default.
- W2783180185 hasConceptScore W2783180185C105795698 @default.
- W2783180185 hasConceptScore W2783180185C107673813 @default.
- W2783180185 hasConceptScore W2783180185C112680207 @default.
- W2783180185 hasConceptScore W2783180185C11413529 @default.
- W2783180185 hasConceptScore W2783180185C115961682 @default.
- W2783180185 hasConceptScore W2783180185C126255220 @default.
- W2783180185 hasConceptScore W2783180185C136536468 @default.
- W2783180185 hasConceptScore W2783180185C153180895 @default.
- W2783180185 hasConceptScore W2783180185C154945302 @default.
- W2783180185 hasConceptScore W2783180185C157972887 @default.
- W2783180185 hasConceptScore W2783180185C160234255 @default.
- W2783180185 hasConceptScore W2783180185C2524010 @default.
- W2783180185 hasConceptScore W2783180185C33923547 @default.
- W2783180185 hasConceptScore W2783180185C4069607 @default.
- W2783180185 hasConceptScore W2783180185C41008148 @default.
- W2783180185 hasConceptScore W2783180185C54197355 @default.
- W2783180185 hasConceptScore W2783180185C554190296 @default.
- W2783180185 hasConceptScore W2783180185C76155785 @default.
- W2783180185 hasConceptScore W2783180185C99498987 @default.
- W2783180185 hasFunder F4320337345 @default.
- W2783180185 hasLocation W27831801851 @default.
- W2783180185 hasLocation W27831801852 @default.
- W2783180185 hasLocation W27831801853 @default.
- W2783180185 hasOpenAccess W2783180185 @default.
- W2783180185 hasPrimaryLocation W27831801851 @default.
- W2783180185 hasRelatedWork W2018944617 @default.
- W2783180185 hasRelatedWork W2020683255 @default.