Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783181589> ?p ?o ?g. }
- W2783181589 endingPage "445" @default.
- W2783181589 startingPage "436" @default.
- W2783181589 abstract "An attempt has been made to develop Artificial Neural Network (ANN) model for prediction of nitrate concentration in groundwater of Kadava River basin, Nashik District, Maharashtra. The study area lies between longitude 73°55:74°15’E and latitude 19°55’:20°25’N. River Kadava is one of the tributary of Godavari which originates in Sahyadri hills and flows towards NW to SE direction. Forty (40) representative groundwater samples were collected from dug/bore wells and analyzed for major cations and anions during pre and post monsoon seasons of 2012. Physicochemical results confirm that, 67.50% and 75% of groundwater samples having NO3 concentration beyond the permissible limit of the BIS (>45 mg/L) in both the seasons. The spatiotemporal analysis inferred that, nitrate prone areas located in North and Central part of the study area, may be due to intense agriculture and overuse of nitrogen rich fertilizers and natural processes viz., dissolution, percolation and leaching. The consumption of high nitrate containing water is harmful to human health; consequently, it reduces the oxygen carrying capacity of the blood and in infant causes methemoglobinemia. In view of this the assessment and prediction of groundwater quality is an essential to predict the nitrate content to avoid future consequences, therefore there is need to develop a consistent, precise and resilient predictive model. The present study utilizes the algorithms viz., Levenberg - Marquardt three layer back propagation, traditional back propagation algorithm, resilient back propagation with and without weight algorithm, smallest absolute derivative (sag) and smallest learning rate (slr) for nitrate prediction. The Levenberg - Marquardt three layer back-propagation algorithm was found effective with 7 and 8 input neurons for pre and post monsoon season; 6 hidden neurons and nitrate content as a output variable. The efficiency of model is validated through coefficient of determination (R2), Residual Mean Square Error (RMSE) and Mean Absolute Relative Error (MARE) values. The present model gives satisfactory results and confirms consistent acceptable performance in both the seasons. The proposed ANN model may be helpful for similar studies and will be helpful to local public health bodies and policy makers to develop the management strategies." @default.
- W2783181589 created "2018-01-26" @default.
- W2783181589 creator A5007271271 @default.
- W2783181589 creator A5020282042 @default.
- W2783181589 creator A5057821739 @default.
- W2783181589 creator A5076343261 @default.
- W2783181589 creator A5083424080 @default.
- W2783181589 date "2018-09-01" @default.
- W2783181589 modified "2023-10-16" @default.
- W2783181589 title "Neural network modelling for nitrate concentration in groundwater of Kadava River basin, Nashik, Maharashtra, India" @default.
- W2783181589 cites W1592176596 @default.
- W2783181589 cites W1967232404 @default.
- W2783181589 cites W1980300271 @default.
- W2783181589 cites W2012440017 @default.
- W2783181589 cites W2025332615 @default.
- W2783181589 cites W2031773346 @default.
- W2783181589 cites W2062862681 @default.
- W2783181589 cites W2064263992 @default.
- W2783181589 cites W2073284025 @default.
- W2783181589 cites W2077395072 @default.
- W2783181589 cites W2085731993 @default.
- W2783181589 cites W2087749822 @default.
- W2783181589 cites W2088707547 @default.
- W2783181589 cites W2118930997 @default.
- W2783181589 cites W2122822206 @default.
- W2783181589 cites W2148300238 @default.
- W2783181589 cites W2300726493 @default.
- W2783181589 cites W2312400300 @default.
- W2783181589 cites W2516144375 @default.
- W2783181589 cites W2545750502 @default.
- W2783181589 cites W2553351801 @default.
- W2783181589 cites W2560087124 @default.
- W2783181589 cites W2592699232 @default.
- W2783181589 doi "https://doi.org/10.1016/j.gsd.2017.12.012" @default.
- W2783181589 hasPublicationYear "2018" @default.
- W2783181589 type Work @default.
- W2783181589 sameAs 2783181589 @default.
- W2783181589 citedByCount "72" @default.
- W2783181589 countsByYear W27831815892018 @default.
- W2783181589 countsByYear W27831815892019 @default.
- W2783181589 countsByYear W27831815892020 @default.
- W2783181589 countsByYear W27831815892021 @default.
- W2783181589 countsByYear W27831815892022 @default.
- W2783181589 countsByYear W27831815892023 @default.
- W2783181589 crossrefType "journal-article" @default.
- W2783181589 hasAuthorship W2783181589A5007271271 @default.
- W2783181589 hasAuthorship W2783181589A5020282042 @default.
- W2783181589 hasAuthorship W2783181589A5057821739 @default.
- W2783181589 hasAuthorship W2783181589A5076343261 @default.
- W2783181589 hasAuthorship W2783181589A5083424080 @default.
- W2783181589 hasConcept C109007969 @default.
- W2783181589 hasConcept C126645576 @default.
- W2783181589 hasConcept C127313418 @default.
- W2783181589 hasConcept C151730666 @default.
- W2783181589 hasConcept C16828302 @default.
- W2783181589 hasConcept C178790620 @default.
- W2783181589 hasConcept C185592680 @default.
- W2783181589 hasConcept C187320778 @default.
- W2783181589 hasConcept C18903297 @default.
- W2783181589 hasConcept C205649164 @default.
- W2783181589 hasConcept C2776384668 @default.
- W2783181589 hasConcept C2780797713 @default.
- W2783181589 hasConcept C39432304 @default.
- W2783181589 hasConcept C58640448 @default.
- W2783181589 hasConcept C76177295 @default.
- W2783181589 hasConcept C76886044 @default.
- W2783181589 hasConcept C86803240 @default.
- W2783181589 hasConcept C87717796 @default.
- W2783181589 hasConceptScore W2783181589C109007969 @default.
- W2783181589 hasConceptScore W2783181589C126645576 @default.
- W2783181589 hasConceptScore W2783181589C127313418 @default.
- W2783181589 hasConceptScore W2783181589C151730666 @default.
- W2783181589 hasConceptScore W2783181589C16828302 @default.
- W2783181589 hasConceptScore W2783181589C178790620 @default.
- W2783181589 hasConceptScore W2783181589C185592680 @default.
- W2783181589 hasConceptScore W2783181589C187320778 @default.
- W2783181589 hasConceptScore W2783181589C18903297 @default.
- W2783181589 hasConceptScore W2783181589C205649164 @default.
- W2783181589 hasConceptScore W2783181589C2776384668 @default.
- W2783181589 hasConceptScore W2783181589C2780797713 @default.
- W2783181589 hasConceptScore W2783181589C39432304 @default.
- W2783181589 hasConceptScore W2783181589C58640448 @default.
- W2783181589 hasConceptScore W2783181589C76177295 @default.
- W2783181589 hasConceptScore W2783181589C76886044 @default.
- W2783181589 hasConceptScore W2783181589C86803240 @default.
- W2783181589 hasConceptScore W2783181589C87717796 @default.
- W2783181589 hasLocation W27831815891 @default.
- W2783181589 hasOpenAccess W2783181589 @default.
- W2783181589 hasPrimaryLocation W27831815891 @default.
- W2783181589 hasRelatedWork W2089984573 @default.
- W2783181589 hasRelatedWork W2323916994 @default.
- W2783181589 hasRelatedWork W261249232 @default.
- W2783181589 hasRelatedWork W2766681990 @default.
- W2783181589 hasRelatedWork W3148971397 @default.
- W2783181589 hasRelatedWork W3159173380 @default.
- W2783181589 hasRelatedWork W3211266215 @default.
- W2783181589 hasRelatedWork W766896506 @default.
- W2783181589 hasRelatedWork W83911074 @default.