Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783184691> ?p ?o ?g. }
- W2783184691 endingPage "225" @default.
- W2783184691 startingPage "207" @default.
- W2783184691 abstract "Evapotranspiration (ET) is commonly estimated using the Penman-Monteith equation, which assumes that the plant canopy is a big leaf (BL) and the water flux from vegetation is regulated by canopy stomatal conductance (Gs). However, BL has been found to be unsuitable for terrestrial biosphere models built on the carbon-water coupling principle because it fails to capture daily variations of gross primary productivity (GPP). A two-big-leaf scheme (TBL) and a two-leaf scheme (TL) that stratify a canopy into sunlit and shaded leaves have been developed to address this issue. However, there is a lack of comparison of these upscaling schemes for ET estimation, especially on the difference between TBL and TL. We find that TL shows strong performance (r2 = 0.71, root-mean-square error = 0.05 mm/h) in estimating ET at nine eddy covariance towers in Canada. BL simulates lower annual ET and GPP than TL and TBL. The biases of estimated ET and GPP increase with leaf area index (LAI) in BL and TBL, and the biases of TL show no trends with LAI. BL miscalculates the portions of light-saturated and light-unsaturated leaves in the canopy, incurring negative biases in its flux estimation. TBL and TL showed improved yet different GPP and ET estimations. This difference is attributed to the lower Gs and intercellular CO2 concentration simulated in TBL compared to their counterparts in TL. We suggest to use TL for ET modeling to avoid the uncertainty propagated from the artificial upscaling of leaf-level processes to the canopy scale in BL and TBL." @default.
- W2783184691 created "2018-01-26" @default.
- W2783184691 creator A5000730350 @default.
- W2783184691 creator A5001458976 @default.
- W2783184691 creator A5006053966 @default.
- W2783184691 creator A5014933674 @default.
- W2783184691 creator A5019081296 @default.
- W2783184691 creator A5025093003 @default.
- W2783184691 creator A5048953197 @default.
- W2783184691 creator A5051790691 @default.
- W2783184691 creator A5062138355 @default.
- W2783184691 creator A5069499308 @default.
- W2783184691 creator A5073922433 @default.
- W2783184691 creator A5081499822 @default.
- W2783184691 date "2018-01-01" @default.
- W2783184691 modified "2023-10-16" @default.
- W2783184691 title "Comparison of Big‐Leaf, Two‐Big‐Leaf, and Two‐Leaf Upscaling Schemes for Evapotranspiration Estimation Using Coupled Carbon‐Water Modeling" @default.
- W2783184691 cites W1209269186 @default.
- W2783184691 cites W1500576594 @default.
- W2783184691 cites W1548802581 @default.
- W2783184691 cites W1553108857 @default.
- W2783184691 cites W1626255624 @default.
- W2783184691 cites W1736367156 @default.
- W2783184691 cites W1871061449 @default.
- W2783184691 cites W1960171269 @default.
- W2783184691 cites W1963729508 @default.
- W2783184691 cites W1969939898 @default.
- W2783184691 cites W1975768883 @default.
- W2783184691 cites W1976451484 @default.
- W2783184691 cites W1986802129 @default.
- W2783184691 cites W1989473086 @default.
- W2783184691 cites W2005130712 @default.
- W2783184691 cites W2008044206 @default.
- W2783184691 cites W2010036012 @default.
- W2783184691 cites W2011196014 @default.
- W2783184691 cites W2013198163 @default.
- W2783184691 cites W2014431247 @default.
- W2783184691 cites W2027968622 @default.
- W2783184691 cites W2029910927 @default.
- W2783184691 cites W2030097343 @default.
- W2783184691 cites W2039507572 @default.
- W2783184691 cites W2040984293 @default.
- W2783184691 cites W2045471454 @default.
- W2783184691 cites W2046857879 @default.
- W2783184691 cites W2048566183 @default.
- W2783184691 cites W2051439571 @default.
- W2783184691 cites W2054259981 @default.
- W2783184691 cites W2054566120 @default.
- W2783184691 cites W2056308570 @default.
- W2783184691 cites W2059631183 @default.
- W2783184691 cites W2065445084 @default.
- W2783184691 cites W2073951769 @default.
- W2783184691 cites W2075965791 @default.
- W2783184691 cites W2083735459 @default.
- W2783184691 cites W2085390210 @default.
- W2783184691 cites W2100174116 @default.
- W2783184691 cites W2100179247 @default.
- W2783184691 cites W2100965054 @default.
- W2783184691 cites W2106077644 @default.
- W2783184691 cites W2110020340 @default.
- W2783184691 cites W2116291451 @default.
- W2783184691 cites W2125453422 @default.
- W2783184691 cites W2125491431 @default.
- W2783184691 cites W2126473364 @default.
- W2783184691 cites W2128435038 @default.
- W2783184691 cites W2136904626 @default.
- W2783184691 cites W2137199185 @default.
- W2783184691 cites W2137203802 @default.
- W2783184691 cites W2141748334 @default.
- W2783184691 cites W2147611675 @default.
- W2783184691 cites W2149550872 @default.
- W2783184691 cites W2150028716 @default.
- W2783184691 cites W2157144502 @default.
- W2783184691 cites W2161094103 @default.
- W2783184691 cites W2161783224 @default.
- W2783184691 cites W2163212582 @default.
- W2783184691 cites W2164330309 @default.
- W2783184691 cites W2166186402 @default.
- W2783184691 cites W2166897060 @default.
- W2783184691 cites W2167453193 @default.
- W2783184691 cites W2170308093 @default.
- W2783184691 cites W2172148618 @default.
- W2783184691 cites W2179250365 @default.
- W2783184691 cites W2183882374 @default.
- W2783184691 cites W2204946106 @default.
- W2783184691 cites W2316273349 @default.
- W2783184691 cites W2316929704 @default.
- W2783184691 cites W2324913510 @default.
- W2783184691 cites W2500082804 @default.
- W2783184691 cites W2549259980 @default.
- W2783184691 cites W4299847412 @default.
- W2783184691 cites W561751437 @default.
- W2783184691 doi "https://doi.org/10.1002/2017jg003978" @default.
- W2783184691 hasPublicationYear "2018" @default.
- W2783184691 type Work @default.
- W2783184691 sameAs 2783184691 @default.
- W2783184691 citedByCount "51" @default.
- W2783184691 countsByYear W27831846912018 @default.