Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783190965> ?p ?o ?g. }
- W2783190965 endingPage "212" @default.
- W2783190965 startingPage "204" @default.
- W2783190965 abstract "Deep learning methods, e.g., convolutional neural networks (CNNs) and Recurrent Neural Networks (RNNs), have achieved great success in image processing and natural language processing especially in high level vision applications such as recognition and understanding. However, it is rarely used to solve information security problems such as attack detection studied in this paper. Here, we move forward a step and propose a novel multi-channel intelligent attack detection method based on long short term memory recurrent neural networks (LSTM-RNNs). To achieve high detection rate, data preprocessing, feature abstraction, and multi-channel training and detection are seamlessly integrated into an end-to-end detection framework. Data preprocessing provides high-quality data for subsequent processing, then different types of features are extracted from the processed data. Multi-channel processing is used to generate classifiers by training neural networks with different types of features, which preserve attack features of input vectors and classify the attack from normal data. With the results of the classifier's attack detection, we introduce a voting algorithm to decide whether the input data is an attack or not. Experimental results validate that the proposed attack detection method greatly outperforms several attack detection methods that use feature detection and Bayesian or SVM classifiers." @default.
- W2783190965 created "2018-01-26" @default.
- W2783190965 creator A5005727515 @default.
- W2783190965 creator A5012736679 @default.
- W2783190965 creator A5028788431 @default.
- W2783190965 creator A5054864573 @default.
- W2783190965 creator A5056608045 @default.
- W2783190965 creator A5071261948 @default.
- W2783190965 creator A5073263477 @default.
- W2783190965 creator A5083199224 @default.
- W2783190965 date "2020-04-01" @default.
- W2783190965 modified "2023-10-14" @default.
- W2783190965 title "Deep Learning Based Multi-Channel Intelligent Attack Detection for Data Security" @default.
- W2783190965 cites W133834503 @default.
- W2783190965 cites W1484629467 @default.
- W2783190965 cites W1545764953 @default.
- W2783190965 cites W1811853421 @default.
- W2783190965 cites W1969082358 @default.
- W2783190965 cites W1971129545 @default.
- W2783190965 cites W1977838479 @default.
- W2783190965 cites W2064675550 @default.
- W2783190965 cites W2086742208 @default.
- W2783190965 cites W2099940443 @default.
- W2783190965 cites W2107878631 @default.
- W2783190965 cites W2115569246 @default.
- W2783190965 cites W2130676130 @default.
- W2783190965 cites W2133976259 @default.
- W2783190965 cites W2145623070 @default.
- W2783190965 cites W2150355110 @default.
- W2783190965 cites W2171865010 @default.
- W2783190965 cites W2299597245 @default.
- W2783190965 cites W2315643162 @default.
- W2783190965 cites W2335999708 @default.
- W2783190965 cites W2399941526 @default.
- W2783190965 cites W2414564754 @default.
- W2783190965 cites W2473868734 @default.
- W2783190965 cites W2484332996 @default.
- W2783190965 cites W2495320776 @default.
- W2783190965 cites W2529525882 @default.
- W2783190965 cites W2531448500 @default.
- W2783190965 cites W2535642622 @default.
- W2783190965 cites W2560162835 @default.
- W2783190965 cites W2584408238 @default.
- W2783190965 cites W2598811698 @default.
- W2783190965 cites W2607252931 @default.
- W2783190965 cites W2616548780 @default.
- W2783190965 cites W2618824331 @default.
- W2783190965 cites W2624845660 @default.
- W2783190965 cites W2752901856 @default.
- W2783190965 cites W2753352458 @default.
- W2783190965 cites W2767101793 @default.
- W2783190965 cites W647098304 @default.
- W2783190965 cites W7191366 @default.
- W2783190965 doi "https://doi.org/10.1109/tsusc.2018.2793284" @default.
- W2783190965 hasPublicationYear "2020" @default.
- W2783190965 type Work @default.
- W2783190965 sameAs 2783190965 @default.
- W2783190965 citedByCount "128" @default.
- W2783190965 countsByYear W27831909652018 @default.
- W2783190965 countsByYear W27831909652019 @default.
- W2783190965 countsByYear W27831909652020 @default.
- W2783190965 countsByYear W27831909652021 @default.
- W2783190965 countsByYear W27831909652022 @default.
- W2783190965 countsByYear W27831909652023 @default.
- W2783190965 crossrefType "journal-article" @default.
- W2783190965 hasAuthorship W2783190965A5005727515 @default.
- W2783190965 hasAuthorship W2783190965A5012736679 @default.
- W2783190965 hasAuthorship W2783190965A5028788431 @default.
- W2783190965 hasAuthorship W2783190965A5054864573 @default.
- W2783190965 hasAuthorship W2783190965A5056608045 @default.
- W2783190965 hasAuthorship W2783190965A5071261948 @default.
- W2783190965 hasAuthorship W2783190965A5073263477 @default.
- W2783190965 hasAuthorship W2783190965A5083199224 @default.
- W2783190965 hasConcept C10551718 @default.
- W2783190965 hasConcept C108583219 @default.
- W2783190965 hasConcept C119857082 @default.
- W2783190965 hasConcept C12267149 @default.
- W2783190965 hasConcept C124101348 @default.
- W2783190965 hasConcept C147168706 @default.
- W2783190965 hasConcept C153180895 @default.
- W2783190965 hasConcept C154945302 @default.
- W2783190965 hasConcept C34736171 @default.
- W2783190965 hasConcept C41008148 @default.
- W2783190965 hasConcept C50644808 @default.
- W2783190965 hasConcept C52001869 @default.
- W2783190965 hasConcept C52622490 @default.
- W2783190965 hasConcept C81363708 @default.
- W2783190965 hasConceptScore W2783190965C10551718 @default.
- W2783190965 hasConceptScore W2783190965C108583219 @default.
- W2783190965 hasConceptScore W2783190965C119857082 @default.
- W2783190965 hasConceptScore W2783190965C12267149 @default.
- W2783190965 hasConceptScore W2783190965C124101348 @default.
- W2783190965 hasConceptScore W2783190965C147168706 @default.
- W2783190965 hasConceptScore W2783190965C153180895 @default.
- W2783190965 hasConceptScore W2783190965C154945302 @default.
- W2783190965 hasConceptScore W2783190965C34736171 @default.
- W2783190965 hasConceptScore W2783190965C41008148 @default.
- W2783190965 hasConceptScore W2783190965C50644808 @default.