Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783198720> ?p ?o ?g. }
- W2783198720 abstract "Author(s): Karp, Steven Neil | Advisor(s): Williams, Lauren K. | Abstract: Total positivity is the mathematical study of spaces and their positive parts, which can have interesting combinatorial properties as well as applications in areas such as analysis, representation theory, and theoretical physics. In this dissertation, I study total positivity in the Grassmannian Gr(k,n), which is the space of k-dimensional subspaces of R^n. The totally nonnegative Grassmannian is the subset of Gr(k,n) where all Plucker coordinates are nonnegative. In Chapter 2, I generalize a result of Gantmakher and Krein, who showed that an element V of Gr(k,n) is totally nonnegative if and only if every vector in V, when viewed as a sequence of n numbers and ignoring any zeros, changes sign at most k-1 times. I characterize when the vectors in V change sign at most k-1+m times for any m, in terms of the Plucker coordinates of V. I then apply this result to solve the problem of determining when Grassmann polytopes, generalizations of polytopes into the Grassmannian studied by Lam, are well defined. In Chapter 3, which is joint work with Lauren Williams, we study the (tree) amplituhedron A(n,k,m), the image in Gr(k,k+m) of the totally nonnegative part of Gr(k,n) under a (map induced by a) linear map which is totally positive. It was introduced by Arkani-Hamed and Trnka in 2013 in order to give a geometric basis for computing scattering amplitudes in N=4 supersymmetric Yang-Mills theory. We take an orthogonal point of view and define a related B-amplituhedron B(n,k,m), which we show is isomorphic to A(n,k,m), and use the results of Chapter 2 to describe the amplituhedron in terms of sign variation. Then we use this reformulation to give a cell decomposition of the amplituhedron in the case m=1, using the images of a collection of distinguished cells of the totally nonnegative Grassmannian. We also identify A(n,k,1) with the complex of bounded faces of a cyclic hyperplane arrangement, and deduce that A(n,k,1) is homeomorphic to a ball. In Chapter 4, I study the action of the cyclic group of order n on the totally nonnegative part of Gr(k,n). I show that the cyclic action has a unique fixed point, given by taking n equally spaced points on the trigonometric moment curve (if k is odd) or the symmetric moment curve (if k is even). More generally, I show that the cyclic action on the entire complex Grassmannian has exactly n choose k fixed points, corresponding to k-subsets of nth roots of (-1)^(k-1). I explain how these fixed points also appear in the study of the quantum cohomology ring of the Grassmannian." @default.
- W2783198720 created "2018-01-26" @default.
- W2783198720 creator A5022997192 @default.
- W2783198720 date "2017-01-01" @default.
- W2783198720 modified "2023-09-26" @default.
- W2783198720 title "Total positivity for Grassmannians and amplituhedra" @default.
- W2783198720 cites W1477581641 @default.
- W2783198720 cites W1504731849 @default.
- W2783198720 cites W1593193619 @default.
- W2783198720 cites W1601162463 @default.
- W2783198720 cites W1672638072 @default.
- W2783198720 cites W1811565114 @default.
- W2783198720 cites W1965060262 @default.
- W2783198720 cites W1971607534 @default.
- W2783198720 cites W1983127118 @default.
- W2783198720 cites W1998561966 @default.
- W2783198720 cites W2001367217 @default.
- W2783198720 cites W2021311057 @default.
- W2783198720 cites W2036180628 @default.
- W2783198720 cites W2037434168 @default.
- W2783198720 cites W2046938033 @default.
- W2783198720 cites W2064674038 @default.
- W2783198720 cites W2066913327 @default.
- W2783198720 cites W2084948855 @default.
- W2783198720 cites W2087622479 @default.
- W2783198720 cites W2090366362 @default.
- W2783198720 cites W2091456587 @default.
- W2783198720 cites W2093244751 @default.
- W2783198720 cites W2094302535 @default.
- W2783198720 cites W2110451458 @default.
- W2783198720 cites W2134009244 @default.
- W2783198720 cites W2134402767 @default.
- W2783198720 cites W2145334382 @default.
- W2783198720 cites W2148642357 @default.
- W2783198720 cites W2153317437 @default.
- W2783198720 cites W2164133693 @default.
- W2783198720 cites W2324916048 @default.
- W2783198720 cites W2328684329 @default.
- W2783198720 cites W2331952463 @default.
- W2783198720 cites W2508429878 @default.
- W2783198720 cites W2594757317 @default.
- W2783198720 cites W2914659449 @default.
- W2783198720 cites W2963533603 @default.
- W2783198720 cites W2963679706 @default.
- W2783198720 cites W2964082626 @default.
- W2783198720 cites W2964272847 @default.
- W2783198720 cites W2964308896 @default.
- W2783198720 cites W3009825891 @default.
- W2783198720 cites W30254118 @default.
- W2783198720 cites W3098593131 @default.
- W2783198720 cites W614920821 @default.
- W2783198720 cites W73782397 @default.
- W2783198720 hasPublicationYear "2017" @default.
- W2783198720 type Work @default.
- W2783198720 sameAs 2783198720 @default.
- W2783198720 citedByCount "0" @default.
- W2783198720 crossrefType "journal-article" @default.
- W2783198720 hasAuthorship W2783198720A5022997192 @default.
- W2783198720 hasConcept C10138342 @default.
- W2783198720 hasConcept C113174947 @default.
- W2783198720 hasConcept C114614502 @default.
- W2783198720 hasConcept C118615104 @default.
- W2783198720 hasConcept C12362212 @default.
- W2783198720 hasConcept C13336665 @default.
- W2783198720 hasConcept C134306372 @default.
- W2783198720 hasConcept C139676723 @default.
- W2783198720 hasConcept C145691206 @default.
- W2783198720 hasConcept C162324750 @default.
- W2783198720 hasConcept C162929932 @default.
- W2783198720 hasConcept C182306322 @default.
- W2783198720 hasConcept C202444582 @default.
- W2783198720 hasConcept C33923547 @default.
- W2783198720 hasConceptScore W2783198720C10138342 @default.
- W2783198720 hasConceptScore W2783198720C113174947 @default.
- W2783198720 hasConceptScore W2783198720C114614502 @default.
- W2783198720 hasConceptScore W2783198720C118615104 @default.
- W2783198720 hasConceptScore W2783198720C12362212 @default.
- W2783198720 hasConceptScore W2783198720C13336665 @default.
- W2783198720 hasConceptScore W2783198720C134306372 @default.
- W2783198720 hasConceptScore W2783198720C139676723 @default.
- W2783198720 hasConceptScore W2783198720C145691206 @default.
- W2783198720 hasConceptScore W2783198720C162324750 @default.
- W2783198720 hasConceptScore W2783198720C162929932 @default.
- W2783198720 hasConceptScore W2783198720C182306322 @default.
- W2783198720 hasConceptScore W2783198720C202444582 @default.
- W2783198720 hasConceptScore W2783198720C33923547 @default.
- W2783198720 hasLocation W27831987201 @default.
- W2783198720 hasOpenAccess W2783198720 @default.
- W2783198720 hasPrimaryLocation W27831987201 @default.
- W2783198720 hasRelatedWork W1517541971 @default.
- W2783198720 hasRelatedWork W1652149224 @default.
- W2783198720 hasRelatedWork W1664268280 @default.
- W2783198720 hasRelatedWork W1912500717 @default.
- W2783198720 hasRelatedWork W1974556932 @default.
- W2783198720 hasRelatedWork W1975923819 @default.
- W2783198720 hasRelatedWork W2014943225 @default.
- W2783198720 hasRelatedWork W2032265058 @default.
- W2783198720 hasRelatedWork W2187787065 @default.
- W2783198720 hasRelatedWork W2227478074 @default.
- W2783198720 hasRelatedWork W2289336107 @default.