Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783204403> ?p ?o ?g. }
- W2783204403 endingPage "64" @default.
- W2783204403 startingPage "54" @default.
- W2783204403 abstract "Accurate and robust wind speed forecasting is essential for the planning, scheduling and maintenance of wind power. In this study, a novel wind speed multistep prediction model is proposed by combing the VMD (Variational Mode Decomposition), SSA (Singular Spectrum Analysis), LSTM (Long Short Term Memory) network and ELM (Extreme Learning Machine), in which, the VMD is employed to decompose the original wind speed data into a series of sub-layers; the SSA is adopted to further extract the trend information of all the sub-layers; the LSTM network is used to complete the forecasting for the low-frequency sub-layers obtained by the VMD-SSA; and the ELM is used to complete the forecasting for the high-frequency sub-layers obtained by the VMD-SSA. To investigate the multistep prediction performance of the proposed models, eight models are included in the comparisons. The four experiments results show that: (a) among all the involved models, the proposed model has the best multistep prediction performance; (b) compared to the other involved models, the proposed model is more effective and robust in extracting the trend information." @default.
- W2783204403 created "2018-01-26" @default.
- W2783204403 creator A5044301848 @default.
- W2783204403 creator A5059138283 @default.
- W2783204403 creator A5086119273 @default.
- W2783204403 date "2018-03-01" @default.
- W2783204403 modified "2023-10-16" @default.
- W2783204403 title "Smart multi-step deep learning model for wind speed forecasting based on variational mode decomposition, singular spectrum analysis, LSTM network and ELM" @default.
- W2783204403 cites W1020186056 @default.
- W2783204403 cites W1185746543 @default.
- W2783204403 cites W1705374184 @default.
- W2783204403 cites W1715353133 @default.
- W2783204403 cites W1923027492 @default.
- W2783204403 cites W2000982976 @default.
- W2783204403 cites W2004193933 @default.
- W2783204403 cites W2004353783 @default.
- W2783204403 cites W2019715411 @default.
- W2783204403 cites W2033852689 @default.
- W2783204403 cites W2055221518 @default.
- W2783204403 cites W2066990386 @default.
- W2783204403 cites W2070960910 @default.
- W2783204403 cites W2164012291 @default.
- W2783204403 cites W2173299659 @default.
- W2783204403 cites W2222497113 @default.
- W2783204403 cites W2280029926 @default.
- W2783204403 cites W2284726324 @default.
- W2783204403 cites W2286725013 @default.
- W2783204403 cites W2299228984 @default.
- W2783204403 cites W2329476579 @default.
- W2783204403 cites W2342077627 @default.
- W2783204403 cites W2345862676 @default.
- W2783204403 cites W2392689491 @default.
- W2783204403 cites W2401688955 @default.
- W2783204403 cites W2533807209 @default.
- W2783204403 cites W2552968277 @default.
- W2783204403 cites W2560370080 @default.
- W2783204403 cites W2563961440 @default.
- W2783204403 cites W2566003805 @default.
- W2783204403 cites W2571217044 @default.
- W2783204403 cites W2573054668 @default.
- W2783204403 cites W2581205918 @default.
- W2783204403 cites W2582163918 @default.
- W2783204403 cites W2605224847 @default.
- W2783204403 cites W2606283685 @default.
- W2783204403 cites W2611273431 @default.
- W2783204403 cites W2617244595 @default.
- W2783204403 cites W2716001926 @default.
- W2783204403 cites W2729912483 @default.
- W2783204403 cites W2731024278 @default.
- W2783204403 cites W2755364685 @default.
- W2783204403 cites W2768102848 @default.
- W2783204403 cites W2768306507 @default.
- W2783204403 cites W2769156605 @default.
- W2783204403 doi "https://doi.org/10.1016/j.enconman.2018.01.010" @default.
- W2783204403 hasPublicationYear "2018" @default.
- W2783204403 type Work @default.
- W2783204403 sameAs 2783204403 @default.
- W2783204403 citedByCount "308" @default.
- W2783204403 countsByYear W27832044032018 @default.
- W2783204403 countsByYear W27832044032019 @default.
- W2783204403 countsByYear W27832044032020 @default.
- W2783204403 countsByYear W27832044032021 @default.
- W2783204403 countsByYear W27832044032022 @default.
- W2783204403 countsByYear W27832044032023 @default.
- W2783204403 crossrefType "journal-article" @default.
- W2783204403 hasAuthorship W2783204403A5044301848 @default.
- W2783204403 hasAuthorship W2783204403A5059138283 @default.
- W2783204403 hasAuthorship W2783204403A5086119273 @default.
- W2783204403 hasConcept C108583219 @default.
- W2783204403 hasConcept C111919701 @default.
- W2783204403 hasConcept C11413529 @default.
- W2783204403 hasConcept C119599485 @default.
- W2783204403 hasConcept C121332964 @default.
- W2783204403 hasConcept C126255220 @default.
- W2783204403 hasConcept C127413603 @default.
- W2783204403 hasConcept C136272165 @default.
- W2783204403 hasConcept C143724316 @default.
- W2783204403 hasConcept C151730666 @default.
- W2783204403 hasConcept C153294291 @default.
- W2783204403 hasConcept C154945302 @default.
- W2783204403 hasConcept C161067210 @default.
- W2783204403 hasConcept C206729178 @default.
- W2783204403 hasConcept C22789450 @default.
- W2783204403 hasConcept C2780150128 @default.
- W2783204403 hasConcept C33923547 @default.
- W2783204403 hasConcept C41008148 @default.
- W2783204403 hasConcept C48677424 @default.
- W2783204403 hasConcept C50644808 @default.
- W2783204403 hasConcept C78600449 @default.
- W2783204403 hasConcept C86803240 @default.
- W2783204403 hasConceptScore W2783204403C108583219 @default.
- W2783204403 hasConceptScore W2783204403C111919701 @default.
- W2783204403 hasConceptScore W2783204403C11413529 @default.
- W2783204403 hasConceptScore W2783204403C119599485 @default.
- W2783204403 hasConceptScore W2783204403C121332964 @default.
- W2783204403 hasConceptScore W2783204403C126255220 @default.
- W2783204403 hasConceptScore W2783204403C127413603 @default.
- W2783204403 hasConceptScore W2783204403C136272165 @default.