Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783205838> ?p ?o ?g. }
- W2783205838 endingPage "1490" @default.
- W2783205838 startingPage "1482" @default.
- W2783205838 abstract "Accurate and physiologically meaningful biomarkers for human aging are key to assessing antiaging therapies. Given ethnic differences in health, diet, lifestyle, behavior, environmental exposures, and even average rate of biological aging, it stands to reason that aging clocks trained on datasets obtained from specific ethnic populations are more likely to account for these potential confounding factors, resulting in an enhanced capacity to predict chronological age and quantify biological age. Here, we present a deep learning-based hematological aging clock modeled using the large combined dataset of Canadian, South Korean, and Eastern European population blood samples that show increased predictive accuracy in individual populations compared to population specific hematologic aging clocks. The performance of models was also evaluated on publicly available samples of the American population from the National Health and Nutrition Examination Survey (NHANES). In addition, we explored the association between age predicted by both population specific and combined hematological clocks and all-cause mortality. Overall, this study suggests (a) the population specificity of aging patterns and (b) hematologic clocks predicts all-cause mortality. The proposed models were added to the freely-available Aging.AI system expanding the range of tools for analysis of human aging." @default.
- W2783205838 created "2018-01-26" @default.
- W2783205838 creator A5001033487 @default.
- W2783205838 creator A5007374617 @default.
- W2783205838 creator A5012536940 @default.
- W2783205838 creator A5013472071 @default.
- W2783205838 creator A5015793767 @default.
- W2783205838 creator A5036742375 @default.
- W2783205838 creator A5050433869 @default.
- W2783205838 creator A5051078979 @default.
- W2783205838 creator A5060347980 @default.
- W2783205838 creator A5066469989 @default.
- W2783205838 creator A5069851925 @default.
- W2783205838 creator A5071440493 @default.
- W2783205838 date "2018-01-11" @default.
- W2783205838 modified "2023-10-11" @default.
- W2783205838 title "Population Specific Biomarkers of Human Aging: A Big Data Study Using South Korean, Canadian, and Eastern European Patient Populations" @default.
- W2783205838 cites W1809056726 @default.
- W2783205838 cites W1969941116 @default.
- W2783205838 cites W1974047233 @default.
- W2783205838 cites W199362993 @default.
- W2783205838 cites W1999769601 @default.
- W2783205838 cites W2005684872 @default.
- W2783205838 cites W2043948526 @default.
- W2783205838 cites W2052412209 @default.
- W2783205838 cites W2058133526 @default.
- W2783205838 cites W2087569500 @default.
- W2783205838 cites W2109498135 @default.
- W2783205838 cites W2114435726 @default.
- W2783205838 cites W2121091193 @default.
- W2783205838 cites W2125018340 @default.
- W2783205838 cites W2131039312 @default.
- W2783205838 cites W2137874618 @default.
- W2783205838 cites W2173367702 @default.
- W2783205838 cites W2290260868 @default.
- W2783205838 cites W2306570595 @default.
- W2783205838 cites W2384506977 @default.
- W2783205838 cites W2399240576 @default.
- W2783205838 cites W2415875234 @default.
- W2783205838 cites W2505539351 @default.
- W2783205838 cites W2513101422 @default.
- W2783205838 cites W2577535221 @default.
- W2783205838 cites W2613203449 @default.
- W2783205838 cites W2618264839 @default.
- W2783205838 cites W2738536235 @default.
- W2783205838 cites W2952009394 @default.
- W2783205838 cites W71660379 @default.
- W2783205838 doi "https://doi.org/10.1093/gerona/gly005" @default.
- W2783205838 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6175034" @default.
- W2783205838 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29340580" @default.
- W2783205838 hasPublicationYear "2018" @default.
- W2783205838 type Work @default.
- W2783205838 sameAs 2783205838 @default.
- W2783205838 citedByCount "112" @default.
- W2783205838 countsByYear W27832058382018 @default.
- W2783205838 countsByYear W27832058382019 @default.
- W2783205838 countsByYear W27832058382020 @default.
- W2783205838 countsByYear W27832058382021 @default.
- W2783205838 countsByYear W27832058382022 @default.
- W2783205838 countsByYear W27832058382023 @default.
- W2783205838 crossrefType "journal-article" @default.
- W2783205838 hasAuthorship W2783205838A5001033487 @default.
- W2783205838 hasAuthorship W2783205838A5007374617 @default.
- W2783205838 hasAuthorship W2783205838A5012536940 @default.
- W2783205838 hasAuthorship W2783205838A5013472071 @default.
- W2783205838 hasAuthorship W2783205838A5015793767 @default.
- W2783205838 hasAuthorship W2783205838A5036742375 @default.
- W2783205838 hasAuthorship W2783205838A5050433869 @default.
- W2783205838 hasAuthorship W2783205838A5051078979 @default.
- W2783205838 hasAuthorship W2783205838A5060347980 @default.
- W2783205838 hasAuthorship W2783205838A5066469989 @default.
- W2783205838 hasAuthorship W2783205838A5069851925 @default.
- W2783205838 hasAuthorship W2783205838A5071440493 @default.
- W2783205838 hasBestOaLocation W27832058381 @default.
- W2783205838 hasConcept C137403100 @default.
- W2783205838 hasConcept C13774568 @default.
- W2783205838 hasConcept C142724271 @default.
- W2783205838 hasConcept C144024400 @default.
- W2783205838 hasConcept C149923435 @default.
- W2783205838 hasConcept C19165224 @default.
- W2783205838 hasConcept C2779874844 @default.
- W2783205838 hasConcept C2908647359 @default.
- W2783205838 hasConcept C3017819807 @default.
- W2783205838 hasConcept C71924100 @default.
- W2783205838 hasConcept C74909509 @default.
- W2783205838 hasConcept C77350462 @default.
- W2783205838 hasConcept C99454951 @default.
- W2783205838 hasConceptScore W2783205838C137403100 @default.
- W2783205838 hasConceptScore W2783205838C13774568 @default.
- W2783205838 hasConceptScore W2783205838C142724271 @default.
- W2783205838 hasConceptScore W2783205838C144024400 @default.
- W2783205838 hasConceptScore W2783205838C149923435 @default.
- W2783205838 hasConceptScore W2783205838C19165224 @default.
- W2783205838 hasConceptScore W2783205838C2779874844 @default.
- W2783205838 hasConceptScore W2783205838C2908647359 @default.
- W2783205838 hasConceptScore W2783205838C3017819807 @default.
- W2783205838 hasConceptScore W2783205838C71924100 @default.
- W2783205838 hasConceptScore W2783205838C74909509 @default.