Matches in SemOpenAlex for { <https://semopenalex.org/work/W2783221544> ?p ?o ?g. }
- W2783221544 endingPage "310" @default.
- W2783221544 startingPage "296" @default.
- W2783221544 abstract "Abstract During the past few decades numerical studies have been widely employed to explore the style of circulation and mixing in the mantle of Earth and other planets. However, in geodynamical studies there are many properties from mineral physics, geochemistry, and petrology in these numerical models. Machine learning, as a computational statistic‐related technique and a subfield of artificial intelligence, has rapidly emerged recently in many fields of sciences and engineering. We focus here on the application of supervised machine learning (SML) algorithms in predictions of mantle flow processes. Specifically, we emphasize on estimating mantle properties by employing machine learning techniques in solving an inverse problem. Using snapshots of numerical convection models as training samples, we enable machine learning models to determine the magnitude of the spin transition‐induced density anomalies that can cause flow stagnation at midmantle depths. Employing support vector machine algorithms, we show that SML techniques can successfully predict the magnitude of mantle density anomalies and can also be used in characterizing mantle flow patterns. The technique can be extended to more complex geodynamic problems in mantle dynamics by employing deep learning algorithms for putting constraints on properties such as viscosity, elastic parameters, and the nature of thermal and chemical anomalies." @default.
- W2783221544 created "2018-01-26" @default.
- W2783221544 creator A5018699937 @default.
- W2783221544 creator A5052103732 @default.
- W2783221544 creator A5059209260 @default.
- W2783221544 date "2018-01-01" @default.
- W2783221544 modified "2023-10-01" @default.
- W2783221544 title "Inverse Problems in Geodynamics Using Machine Learning Algorithms" @default.
- W2783221544 cites W1502363396 @default.
- W2783221544 cites W1512208174 @default.
- W2783221544 cites W1563088657 @default.
- W2783221544 cites W1594412726 @default.
- W2783221544 cites W1601447128 @default.
- W2783221544 cites W1677238257 @default.
- W2783221544 cites W1959998928 @default.
- W2783221544 cites W1969449024 @default.
- W2783221544 cites W1976967272 @default.
- W2783221544 cites W1984800782 @default.
- W2783221544 cites W1988484290 @default.
- W2783221544 cites W1989950368 @default.
- W2783221544 cites W1993301396 @default.
- W2783221544 cites W1995341919 @default.
- W2783221544 cites W1997736401 @default.
- W2783221544 cites W2010415237 @default.
- W2783221544 cites W2014238696 @default.
- W2783221544 cites W2019823218 @default.
- W2783221544 cites W2055173006 @default.
- W2783221544 cites W2065236031 @default.
- W2783221544 cites W2068444442 @default.
- W2783221544 cites W2070031435 @default.
- W2783221544 cites W2087347434 @default.
- W2783221544 cites W2093771778 @default.
- W2783221544 cites W2094348475 @default.
- W2783221544 cites W2094991982 @default.
- W2783221544 cites W2097914838 @default.
- W2783221544 cites W2099911815 @default.
- W2783221544 cites W2112472760 @default.
- W2783221544 cites W2115914348 @default.
- W2783221544 cites W2119243980 @default.
- W2783221544 cites W2128325278 @default.
- W2783221544 cites W2136668526 @default.
- W2783221544 cites W2139418438 @default.
- W2783221544 cites W2159013124 @default.
- W2783221544 cites W2162495764 @default.
- W2783221544 cites W2167727917 @default.
- W2783221544 cites W2168184228 @default.
- W2783221544 cites W2170555783 @default.
- W2783221544 cites W2171860505 @default.
- W2783221544 cites W2378685412 @default.
- W2783221544 cites W2396072896 @default.
- W2783221544 cites W2415722467 @default.
- W2783221544 cites W249406637 @default.
- W2783221544 cites W2527995534 @default.
- W2783221544 cites W2549464769 @default.
- W2783221544 cites W2554327922 @default.
- W2783221544 cites W2584622573 @default.
- W2783221544 cites W2605739831 @default.
- W2783221544 cites W2613130203 @default.
- W2783221544 cites W2619460349 @default.
- W2783221544 cites W2919115771 @default.
- W2783221544 cites W3121912651 @default.
- W2783221544 cites W3124928229 @default.
- W2783221544 cites W3198350258 @default.
- W2783221544 cites W4205947740 @default.
- W2783221544 cites W4232800848 @default.
- W2783221544 cites W4239510810 @default.
- W2783221544 cites W4300805174 @default.
- W2783221544 doi "https://doi.org/10.1002/2017jb014846" @default.
- W2783221544 hasPublicationYear "2018" @default.
- W2783221544 type Work @default.
- W2783221544 sameAs 2783221544 @default.
- W2783221544 citedByCount "27" @default.
- W2783221544 countsByYear W27832215442019 @default.
- W2783221544 countsByYear W27832215442020 @default.
- W2783221544 countsByYear W27832215442021 @default.
- W2783221544 countsByYear W27832215442022 @default.
- W2783221544 countsByYear W27832215442023 @default.
- W2783221544 crossrefType "journal-article" @default.
- W2783221544 hasAuthorship W2783221544A5018699937 @default.
- W2783221544 hasAuthorship W2783221544A5052103732 @default.
- W2783221544 hasAuthorship W2783221544A5059209260 @default.
- W2783221544 hasConcept C11413529 @default.
- W2783221544 hasConcept C119857082 @default.
- W2783221544 hasConcept C127313418 @default.
- W2783221544 hasConcept C136752280 @default.
- W2783221544 hasConcept C151730666 @default.
- W2783221544 hasConcept C154945302 @default.
- W2783221544 hasConcept C190799397 @default.
- W2783221544 hasConcept C41008148 @default.
- W2783221544 hasConcept C58097730 @default.
- W2783221544 hasConcept C67236022 @default.
- W2783221544 hasConcept C77928131 @default.
- W2783221544 hasConcept C8058405 @default.
- W2783221544 hasConceptScore W2783221544C11413529 @default.
- W2783221544 hasConceptScore W2783221544C119857082 @default.
- W2783221544 hasConceptScore W2783221544C127313418 @default.
- W2783221544 hasConceptScore W2783221544C136752280 @default.
- W2783221544 hasConceptScore W2783221544C151730666 @default.